
19PCSC203 - Cryptography and Network Security

Unit-1: Introduction - Security trends – Legal, Ethical and Professional Aspects of Security, Need for Security at

Multiple levels, Security Policies – Model of network security – Security attacks, services and mechanisms – OSI

security architecture – Classical encryption techniques: substitution techniques, transposition techniques,

steganography- Foundations of modern cryptography: perfect security – information theory – product cryptosystem

– cryptanalysis.

Unit-2: Symmetric Encryption and Message Confidentiality - Symmetric Encryption Principles, Symmetric

Block Encryption Algorithms, Stream Ciphers and RC4, Chipher Block Modes of Operation, Location of

Encryption Devices, Key Distribution. Public-key Cryptography and Message Authentication: Approaches to

Message Authentication, Secure Hash Functions and HMAC, Public-Key Cryptography Principles, Public-Key

Cryptography Algorithms, Digital Signatures, Key Management.

 Unit-3: Authentication Applications - Kerberos, x.509 Authentication Service, Public-Key Infrastructure.

Electronic Mail Security: Pretty Good Privacy (PGP), S/MIME.

Unit-4: IP Security - IP Security Over view, IP Security Architecture, Authentication Header, Encapsulating

Security Payload, Combining Security Associations. Web Security: Web Security Considerations, Secure Socket

Layer(SSL) and Transport Layer Security(TLS), Secure Electronic Transaction(SET).Network Management

Security: Basic Concepts of SNMP, SNMPv1 Community Facility, SNMPv3.

Unit-5: Intruders - Intruders, Intrusion Detection, Password Management. Malicious Software: Virus and Related

Threats, Virus Countermeasures, Distributed Denial of Service Attacks. Firewalls: Firewall Design Principles,

Trusted Systems, Common Criteria for Information Technology Security Evaluation.

Text Books:

1. Behrouz A. Ferouzan, “Cryptography & Network Security”, Tata Mc Graw Hill, 2007, Reprint 2015.

2. Stallings William, “Cryptography and Network Security - Principles and Practice 2017.

3. William Stallings, “Network Security Essentials Applications and Standards”, Third Edition, Pearson Education,
2008.

Reference Books

1. Man Young Rhee, “Internet Security: Cryptographic Principles”, “Algorithms And Protocols”, Wiley
Publications, 2003.

2. Charles Pfleeger, “Security In Computing”, 4th Edition, Prentice Hall Of India, 2006.

3. Ulysess Black, “Internet Security Protocols”, Pearson Education Asia, 2000.

4. Charlie Kaufman And Radia Perlman, Mike Speciner, “Network Security, Second Edition, Private
Communication In Public World”, PHI 2002.

UNIT - I

INTRODUCTION

Computer data often travels from one computer to another, leaving the safety of its protected
physical surroundings. Once the data is out of hand, people with bad intention could modify or
forge your data, either for amusement or for their own benefit.

Cryptography can reformat and transform our data, making it safer on its trip between
computers. The technology is based on the essentials of secret codes, augmented by modern
mathematics that protects our data in powerful ways.

• Computer Security - generic name for the collection of tools designed to protect data and to
thwart hackers
• Network Security - measures to protect data during their transmission
• Internet Security - measures to protect data during their transmission over a collection of
interconnected networks

Basic Concepts

Cryptography The art or science encompassing the principles and methods of transforming an
intelligible message into one that is unintelligible, and then retransforming that message back to
its original form

Plaintext The original intelligible message

Cipher text The transformed message

Cipher An algorithm for transforming an intelligible message into one that is unintelligible by
transposition and/or substitution methods

Key Some critical information used by the cipher, known only to the sender & receiver

Encipher (encode) The process of converting plaintext to cipher text using a cipher and a key

Decipher (decode) the process of converting cipher text back into plaintext using a cipher and a
key

Cryptanalysis The study of principles and methods of transforming an unintelligible message
back into an intelligible message without knowledge of the key. Also called code breaking

Cryptology Both cryptography and cryptanalysis

Code An algorithm for transforming an intelligible message into an unintelligible one using a
code-book

Cryptography

Cryptographic systems are generally classified along 3 independent dimensions:

Type of operations used for transforming plain text to cipher text
All the encryption algorithms are based on two general principles: substitution, in which each
element in the plaintext is mapped into another element, and transposition, in which elements in
the plaintext are rearranged.

The number of keys used
If the sender and receiver uses same key then it is said to be symmetric key (or) single key (or)
conventional encryption.
If the sender and receiver use different keys then it is said to be public key encryption.

The way in which the plain text is processed
A block cipher processes the input and block of elements at a time, producing output block for
each input block.

A stream cipher processes the input elements continuously, producing output element one at a
time, as it goes along.

Legal, Ethical and Professional Aspects of Security
Law and Ethics in Information Security

 Laws are rules that mandate or prohibit certain behavior in society; they are drawn
from ethics, which define socially acceptable behaviors. The key difference between laws
and ethics is that laws carry the sanctions of a governing authority and ethics do not. Ethics in
turn are based on Cultural mores.

Ethical Concepts in Information Security

Cultural Differences in Ethical Concepts

· Differences in cultures cause problems in determining what is ethical and what is not ethical

· Studies of ethical sensitivity to computer use reveal different nationalities have different
perspectives

· Difficulties arise when one nationality’s ethical behavior contradicts that of another national

group

Ethics and Education

 Employees must be trained and kept aware of a number of topics related to information
security, not the least of which is the expected behaviors of an ethical employee

 This is especially important in areas of information security, as many employees may not

have the formal technical training to understand that their behavior is unethical or even
illegal

https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/

 Proper ethical and legal training is vital to creating an informed, well prepared, and low-risk
system user

Deterrence to Unethical and Illegal Behavior

ü Deterrence - preventing an illegal or unethical activity
ü Laws, policies, and technical controls are all examples of deterrents
ü Laws and policies only deter if three conditions are present:

 Fear of penalty
 Probability of being caught

 Probability of penalty being administered

SECURITY POLICIES

To know that an operating system maintains the security we expect, we must be able to state its
security policy. A security policy is a statement of the security we expect the system to enforce.
An operating system (or any other piece of a trusted system) can be trusted only in relation to its
security policy; that is, to the security needs the system is expected to satisfy.

We begin our study of security policy by examining military security policy because it has been
the basis of much trusted operating system development and is fairly easy to state precisely.
Then, we move to security policies that commercial establishments might adopt.

Military Security Policy

Military security policy is based on protecting classified information. Each piece of information
is ranked at a particular sensitivity level, such as unclassified, restricted, confidential, secret, or
top secret. The ranks or levels form a hierarchy, and they reflect an increasing order of
sensitivity, as shown in Figure. That is, the information at a given level is more sensitive than the
information in the level below it and less sensitive than in the level above it. For example,
restricted information is more sensitive than unclassified but less sensitive than confidential. We
can denote the sensitivity of an object O by rankO. In the rest of this chapter we assume these five
sensitivity levels.

https://www.brainkart.com/article/Security-Policies_9621/
https://www.brainkart.com/article/Security-Policies_9621/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/
https://www.brainkart.com/article/Legal,-Ethical,-and-Professional-Issues-in-Information-Security_7926/

Information access is limited by the need-to-know rule: Access to sensitive data is allowed only
to subjects who need to know those data to perform their jobs. Each piece of classified
information may be associated with one or more projects, called compartments, describing the
subject matter of the information. For example, the alpha project may use secret information, as
may the beta project, but staff on alpha do not need access to the information on beta. In other
words, both projects use secret information, but each is restricted to only the secret information
needed for its particular project. In this way, compartments help enforce need-to-know
restrictions so that people obtain access only to information that is relevant to their jobs. A
compartment may include information at only one sensitivity level, or it may cover information
at several sensitivity levels. The relationship between compartments and sensitivity levels is
shown in Figure.

We can assign names to identify the compartments, such as snowshoe, crypto, and Sweden. A
single piece of information can be coded with zero, one, two, or more compartment names,
depending on the categories to which it relates. The association of information and compartments
is shown in Figure. For example, one piece of information may be a list of publications on
cryptography, whereas another may describe development of snowshoes in Sweden. The
compartment of this first piece of information is {crypto}; the second is {snowshoe, Sweden}.

The combination <rank; compartments> is called the class or classification of a piece of
information. By designating information in this way, we can enforce need-to-know both by
security level and by topic.

 A person seeking access to sensitive information must be cleared. A clearance is an indication
that a person is trusted to access information up to a certain level of sensitivity and that the
person needs to know certain categories of sensitive information. The clearance of a subject is
expressed as a combination <rank; compartments>. This combination has the same form as the
classification of a piece of information.

 the clearance level of the subject is at least as high as that of the information and
 the subject has a need to know about all compartments for which the information is

classified These conditions are equivalent to saying that the subject dominates the object.

To see how the dominance relation works, consider the concentric circles in Figure. According to
the relationships depicted there, information classified as <secret;{Sweden}> could be read by
someone cleared for access to <top secret;{Sweden}> or <secret;{Sweden, crypto}>, but not by
someone with a <top secret;{crypto}> clearance or someone cleared for <confidential;
{Sweden}> or <secret;{France} >.

Military security enforces both sensitivity requirements and need-to-know requirements.
Sensitivity requirements are known as hierarchical requirements because they reflect the
hierarchy of sensitivity levels; need-to-know restrictions
are nonhierarchical because compartments do not necessarily reflect a hierarchical structure.
This combinational model is appropriate for a setting in which access is rigidly controlled by a
central authority. Someone, often called a security officer, controls clearances and
classifications, which are not generally up to individuals to alter.

Commercial Security Policies

Commercial enterprises have significant security concerns. They worry that industrial espionage
will reveal information to competitors about new products under development. Likewise,
corporations are often eager to protect information about the details of corporate finance. So
even though the commercial world is usually less rigidly and less hierarchically structured than
the military world, we still find many of the same concepts in commercial security policies. For
example, a large organization, such as a corporation or a university, may be divided into groups
or departments, each responsible for a number of disjoint projects. There may also be some
corporate-level responsibilities, such as accounting and personnel activities. Data items at any
level may have different degrees of sensitivity, such as public, proprietary, or internal; here, the
names may vary among organizations, and no universal hierarchy applies.

Let us assume that public information is less sensitive than proprietary, which in turn is less
sensitive than internal. Projects and departments tend to be fairly well separated, with some
overlap as people work on two or more projects. Corporate-level responsibilities tend to overlie
projects and departments, as people throughout the corporation may need accounting or
personnel data. However, even corporate data may have degrees of sensitivity. Projects
themselves may introduce a degree of sensitivity: Staff members on project old-standby have no
need to know about project new-product, while staff members on new-product may have access
to all data on old-standby. For these reasons, a commercial layout of data might look like Figure.

https://www.brainkart.com/article/Security-Policies_9621/
https://www.brainkart.com/article/Security-Policies_9621/

 Two significant differences exist between commercial and military information security. First,
outside the military, there is usually no formalized notion of clearances: A person working on a
commercial project does not require approval for project MARS access by a central security
officer. Typically, an employee is not conferred a different degree of trust by being allowed
access to internal data. Second, because there is no formal concept of a clearance, the rules for
allowing access are less regularized. For example, if a senior manager decides that a person
needs access to a piece of MARS internal data, the manager will instruct someone to allow the
access, either one-time or continuing. Thus, there is no dominance function for most commercial
information access because there is no formal concept of a commercial clearance.

So far, much of our discussion has focused only on read access, which addresses confidentiality
in security. In fact, this narrow view holds true for much of the existing work in computer
security. However, integrity and availability are at least as important as confidentiality in many
instances. Policies for integrity and availability are significantly less well formulated than those
for confidentiality, in both military and commercial realms. In the two examples that follow, we
explore some instances of integrity concerns.

ClarkWilson Commercial Security Policy

In many commercial applications, integrity can be at least as important as confidentiality. The
correctness of accounting records, the accuracy of legal work, and the proper timing of medical
treatments are the essence of their fields. Clark and Wilson proposed a policy for what they
call well-formed transactions, which they assert are as important in their field as is
confidentiality in a military realm.

 To see why, consider a company that orders and pays for materials. A representation of
the procurement process might be this: A purchasing clerk creates an order for a supply,
sending copies of the order to both the supplier and the receiving department.

 The supplier ships the goods, which arrive at the receiving department. A receiving
clerk checks the delivery, ensures that the correct quantity of the right item has been received,
and signs a delivery form. The delivery form and the original order go to the accounting
department.

 The supplier sends an invoice to the accounting department. An accounting clerk
compares the invoice with the original order (as to price and other terms) and the delivery
form (as to quantity and item) and issues a check to the supplier.

The sequence of activities is important. A receiving clerk will not sign a delivery form without
already having received a matching order (because suppliers should not be allowed to ship any
quantities of any items they want and be paid), and an accounting clerk will not issue a check
without already having received a matching order and delivery form (because suppliers should
not be paid for goods not ordered or received). Furthermore, in most cases, both the order and the
delivery form must be signed by authorized individuals. Performing the steps in order,
performing exactly the steps listed, and authenticating the individuals who perform the steps
constitute a well-formed transaction. The goal of the ClarkWilson policy is to maintain
consistency between the internal data and the external (users') expectations of those data.

Clark and Wilson present their policy in terms of constrained data items, which are processed
by transformation procedures. A transformation procedure is like a monitor in that it performs
only particular operations on specific kinds of data items; these data items are manipulated only
by transformation procedures. The transformation procedures maintain the integrity of the data
items by validating the processing to be performed. Clark and Wilson propose defining the
policy in terms of access triples: <userID, TPi, {CDIj, CDIk, ...}>,

combining a transformation procedure, one or more constrained data items, and the identification
of a user who is authorized to operate on those data items by means of the transaction procedure.

Separation of Duty

A second commercial security policy involves separation of responsibility. Clark and
Wilson [CLA87] raised this issue in their analysis of commercial security requirements, and
Lee [LEE88] and Nash and Poland [NAS90] added to the concept.

To see how it works, we continue our example of a small company ordering goods. In the
company, several people might be authorized to issue orders, receive goods, and write checks.
However, we would not want the same person to issue the order, receive the goods, and write the
check, because there is potential for abuse. Therefore, we might want to establish a policy that
specifies that three separate individuals issue the order, receive the goods, and write the check,

even though any of the three might be authorized to do any of these tasks. This required division
of responsibilities is called separation of duty.

Separation of duty is commonly accomplished manually by means of dual signatures. Clark and
Wilson triples are "stateless," meaning that a triple does not have a context of prior operations;
triples are incapable of passing control information to other triples. Thus, if one person is
authorized to perform operations TP1 and TP2, the Clark and Wilson triples cannot prevent the
same person from performing both TP1 and TP2 on a given data item. However, it is quite easy to
implement distinctness if it is stated as a policy requirement.

Chinese Wall Security Policy

Brewer and Nash [BRE89] defined a security policy called the Chinese Wall that reflects certain
commercial needs for information access protection. The security requirements reflect issues
relevant to those people in legal, medical, investment, or accounting firms who might be subject
to conflict of interest. A conflict of interest exists when a person in one company can obtain
sensitive information about people, products, or services in competing companies.

The security policy builds on three levels of abstraction.

 Objects. At the lowest level are elementary objects, such as files. Each file contains
information concerning only one company.

 Company groups. At the next level, all objects concerning a particular company are
grouped together.

 Conflict classes. At the highest level, all groups of objects for competing companies are
clustered.

With this model, each object belongs to a unique company group, and each company group is
contained in a unique conflict class. A conflict class may contain one or more company groups.
For example, suppose you are an advertising company with clients in several fields: chocolate
companies, banks, and airlines. You might want to store data on chocolate companies Suchard
and Cadbury; on banks Citicorp, Deutsche Bank, and Credit Lyonnais; and on airline SAS. You
want to prevent your employees from inadvertently revealing information to a client about that
client's competitors, so you establish the rule that no employee will know sensitive information
about competing companies. Using the Chinese Wall hierarchy, you would form six company
groups (one for each company) and three conflict classes: {Suchard, Cadbury}, {Citicorp,
Deutsche Bank, Credit Lyonnais}, and {SAS}.

The hierarchy guides a simple access control policy: A person can access any information as
long as that person has never accessed information from a different company in the same conflict
class. That is, access is allowed if either the object requested is in the same company group as an
object that has previously been accessed or the object requested belongs to a conflict class that

has never before been accessed. In our example, initially you can access any objects. Suppose
you read from a file on Suchard. A subsequent request for access to any bank or to SAS would
be granted, but a request to access Cadbury files would be denied. Your next access, of SAS
data, does not affect future accesses. But if you then access a file on Credit Lyonnais, you will be
blocked from future accesses to Deutsche Bank or Citicorp. From that point on, as shown
in Figure 5-5, you can access objects only concerning Suchard, SAS, Credit Lyonnais, or a
newly defined conflict class.

The Chinese Wall is a commercially inspired confidentiality policy. It is unlike most other
commercial policies, which focus on integrity. It is also interesting because access permissions
change dynamically: As a subject accesses some objects, other objects that would previously
have been accessible are subsequently denied.

A MODEL FOR NETWORK SECURITY

• A security-related transformation on the information to be sent. Examples include the
encryption of the message, which scrambles the message so that it is unreadable by the opponent,
and the addition of a code based on the contents of the message, which can be used to verify the
identity of the sender.

• Some secret information shared by the two principals and, it is hoped,
unknown to the opponent. An example is an encryption key used in conjunc-tion with the
transformation to scramble the message before transmission and unscramble it on reception.

A trusted third party may be needed to achieve secure transmission. For example, a third party
may be responsible for distributing the secret information to the two principals while keeping it
from any opponent. Or a third party may be needed to arbitrate disputes between the two
principals concerning the authenticity of a message transmission.
This general model shows that there are four basic tasks in designing a particular security
service:

1. Design an algorithm for performing the security-related transformation. The algorithm
should be such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm
and the secret information to achieve a particular security service.

https://www.brainkart.com/article/A-Model-For-Network-Security_8384/

Parts One through Five of this book concentrate on the types of security mecha-nisms and
services that fit into the model shown in Figure. However, there are other security-related
situations of interest that do not neatly fit this model but are consid-ered in this book. A general
model of these other situations is illustrated by Figure 1.5, which reflects a concern for
protecting an information system from unwanted access. Most readers are familiar with the
concerns caused by the existence of hackers, who attempt to penetrate systems that can be
accessed over a network. The hacker can be someone who, with no malign intent, simply gets
satisfaction from breaking and entering a computer system. The intruder can be a disgruntled
employee who wishes to do damage or a criminal who seeks to exploit computer assets for
financial gain

(e.g., obtaining credit card numbers or performing illegal money transfers).

Another type of unwanted access is the placement in a computer system of logic that exploits
vulnerabilities in the system and that can affect application pro-grams as well as utility programs,
such as editors and compilers. Programs can pre-sent two kinds of threats:

• Information access threats: Intercept or modify data on behalf of users who should
not have access to that data.

• Service threats: Exploit service flaws in computers to inhibit use by legitimate users.

Viruses and worms are two examples of software attacks. Such attacks can be introduced into a
system by means of a disk that contains the unwanted logic con-cealed in otherwise useful
software. They can also be inserted into a system across a network; this latter mechanism is of
more concern in network security.

THE OSI SECURITY ARCHITECTURE

To assess effectively the security needs of an organization and to evaluate and choose various
security products and policies, the manager responsible for computer
and network security needs some systematic way of defining the requirements for security and
characterizing the approaches to satisfying those requirements. This
is difficult enough in a centralized data processing environment; with the use of local and wide
area networks, the problems are compounded.

ITU-T4 Recommendation X.800, Security Architecture for OSI, defines such a systematic
approach. The OSI security architecture is useful to managers as a way of organizing the task of
providing security. Furthermore, because this architecture was developed as an international
standard, computer and communications vendors have developed security features for their
products and services that relate to this structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract, overview of many
of the concepts that this book deals with.The OSI security architecture focuses on security
attacks, mechanisms, and services. These can be defined briefly as

Security attack - Any action that compromises the security of information owned by an
organization.
Security mechanism - A mechanism that is designed to detect, prevent or recover from a
security attack.
Security service - A service that enhances the security of the data processing systems and the
information transfers of an organization. The services are intended to counter security attacks
and they make use of one or more security mechanisms to provide the service.

SECURITY ATTACKS

There are four general categories of attack which are listed below.

Interruption
An asset of the system is destroyed or becomes unavailable or unusable. This is an attack on
availability e.g., destruction of piece of hardware, cutting of a communication line or Disabling
of file management system.

Interception
An unauthorized party gains access to an asset. This is an attack on confidentiality. Unauthorized
party could be a person, a program or a computer.e.g., wire tapping to capture data in the
network, illicit copying of files.

Modification
An unauthorized party not only gains access to but tampers with an asset. This is an attack on
integrity. e.g., changing values in data file, altering a program, modifying the contents of
messages being transmitted in a network.

Fabrication
An unauthorized party inserts counterfeit objects into the system. This is an attack on
authenticity.
e.g., insertion of spurious message in a network or addition of records to a file.

Cryptographic Attacks

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal
of the opponent is to obtain information that is being transmitted. Passive attacks are of two
types:

Release of message contents: A telephone conversation, an e-mail message and a transferred
file may contain sensitive or confidential information. We would like to prevent the opponent
from learning the contents of these transmissions.

Traffic analysis: If we had encryption protection in place, an opponent might still be able to
observe the pattern of the message. The opponent could determine the location and identity of
communication hosts and could observe the frequency and length of messages being exchanged.
This information might be useful in guessing the nature of communication that was taking place.
Passive attacks are very difficult to detect because they do not involve any alteration of data.
However, it is feasible to prevent the success of these attacks.

Active attacks

These attacks involve some modification of the data stream or the creation of a false stream.
These attacks can be classified in to four categories:

Masquerade – One entity pretends to be a different entity.
Replay – involves passive capture of a data unit and its subsequent transmission to produce an
unauthorized effect.
Modification of messages – Some portion of message is altered or the messages are delayed or
recorded, to produce an unauthorized effect.
Denial of service – Prevents or inhibits the normal use or management of communication
facilities. Another form of service denial is the disruption of an entire network, either by
disabling the network or overloading it with messages so as to degrade performance. It is quite
difficult to prevent active attacks absolutely, because to do so would require physical protection
of all communication facilities and paths at all times. Instead, the goal is to detect them and to
recover from any disruption or delays caused by them.

SECURITY MECHANISMS

One of the most specific security mechanisms in use is cryptographic techniques.
Encryption or encryption-like transformations of information are the most common means of
providing security. Some of the mechanisms are

1 Encipherment
2 Digital Signature
3 Access Control

SECURITY SERVICES

The classification of security services are as follows:
Confidentiality: Ensures that the information in a computer system and transmitted information
are accessible only for reading by authorized parties.
E.g. Printing, displaying and other forms of disclosure.
Authentication: Ensures that the origin of a message or electronic document is correctly
identified, with an assurance that the identity is not false.
Integrity: Ensures that only authorized parties are able to modify computer system assets and
transmitted information. Modification includes writing, changing status, deleting, creating and
delaying or replaying of transmitted messages.
Non repudiation: Requires that neither the sender nor the receiver of a message be able to deny
the transmission.
Access control: Requires that access to information resources may be controlled by or the target
system.
Availability: Requires that computer system assets be available to authorized parties when
needed.

CLASSICAL ENCRYPTION TECHNIQUES

There are two basic building blocks of all encryption techniques: substitution and transposition.

SUBSTITUTION TECHNIQUES
A substitution technique is one in which the letters of plaintext are replaced by other letters or by
numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves
replacing plaintext bit patterns with cipher text bit patterns.

Caesar cipher (or) shift cipher
The earliest known use of a substitution cipher and the simplest was by Julius Caesar. The
Caesar cipher involves replacing each letter of the alphabet with the letter standing 3 places
further down the alphabet.
e.g., plain text : pay more money
Cipher text: SDB PRUH PRQHB
Note that the alphabet is wrapped around, so that letter following "z" is "a".
For each plaintext letter p, substitute the cipher text letter c such that
C = E(p) = (p+3) mod 26
A shift may be any amount, so that general Caesar algorithm is
C = E (p) = (p+k) mod 26
Where k takes on a value in the range 1 to 25. The decryption algorithm is simply
P = D(C) = (C-k) mod 26

Playfair cipher
The best known multiple letter encryption cipher is the playfair, which treats digrams in the
plaintext as single units and translates these units into cipher text digrams. The playfair algorithm
is based on the use of 5x5 matrix of letters constructed using a keyword. Let the keyword be
"monarchy". The matrix is constructed by filling in the letters of the keyword (minus duplicates)
from left to right and from top to bottom, and then filling in the remainder of the matrix with the
remaining letters in alphabetical order.

The letter "i" and "j" count as one letter. Plaintext is encrypted two letters at a time According to
the following rules:

Repeating plaintext letters that would fall in the same pair are separated with a Filler letter such
as "x".
Plaintext letters that fall in the same row of the matrix are each replaced by the letter to the right,
with the first element of the row following the last.
Plaintext letters that fall in the same column are replaced by the letter beneath, with the top
element of the column following the last.
Otherwise, each plaintext letter is replaced by the letter that lies in its own row And the column
occupied by the other plaintext letter.

M O N A R
C H Y B D
E F G I/J K
L P Q S T
U V W X Z

Plaintext = meet me at the school house
Splitting two letters as a unit => me et me at th es ch o x ol ho us ex
Corresponding cipher text => CL KL CL RS PD IL HY AV MP HF XL IU

Strength of playfair cipher
Playfair cipher is a great advance over simple mono alphabetic ciphers.
Since there are 26 letters, 26x26 = 676 diagrams are possible, so identification of individual
diagram is more difficult.

1.15.1.3 Polyalphabetic ciphers
Another way to improve on the simple monoalphabetic technique is to use different
monoalphabetic substitutions as one proceeds through the plaintext message. The general name
for this approach is polyalphabetic cipher. All the techniques have the following features in
common.
A set of related monoalphabetic substitution rules are used
A key determines which particular rule is chosen for a given transformation.

Vigenere cipher

In this scheme, the set of related monoalphabetic substitution rules consisting of 26 caesar
ciphers with shifts of 0 through 25. Each cipher is denoted by a key letter. e.g., Caesar cipher
with a shift of 3 is denoted by the key value 'd (since a=0, b=1, c=2 and so on). To aid in‟ (since a=0, b=1, c=2 and so on). To aid in

understanding the scheme, a matrix known as vigenere tableau is Constructed. Each of the 26
ciphers is laid out horizontally, with the key letter for each cipher to its left. A normal alphabet
for the plaintext runs across the top. The process of

Encryption is simple: Given a key letter X and a plaintext letter y, the cipher text is at the
intersection of the row labeled x and the column labeled y; in this case, the ciphertext is V.

To encrypt a message, a key is needed that is as long as the message. Usually, the key is a
repeating keyword.

e.g., key = d e c e p t i v e d e c e p t i v e d e c e p t i v e PT = w e a r e d i s c o v e r e d s a
v e y o u r s e l f CT = ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Decryption is equally simple. The key letter again identifies the row. The position of the
cipher text letter in that row determines the column, and the plaintext letter is at the top of that
column.

Strength of Vigenere cipher
 There are multiple cipher text letters for each plaintext letter.
 Letter frequency information is obscured.

One Time Pad Cipher
It is an unbreakable cryptosystem. It represents the message as a sequence of 0s and 1s. This can
be accomplished by writing all numbers in binary, for example, or by using ASCII. The key is a
random sequence of 0 s and 1 s of same length as the message. Once a key is used, it is‟ (since a=0, b=1, c=2 and so on). To aid in ‟ (since a=0, b=1, c=2 and so on). To aid in
discarded and never used again. The system can be expressed as follows:

Ci = Pi Ki Ci - ith binary digit of cipher text Pi - ith binary digit of
plaintext Ki - ith binary digit of key

Exclusive OR operation
Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the key.
Decryption uses the same key. Because of the properties of XOR, decryption simply involves the
same bitwise operation:
Pi = Ci Ki
e.g., plaintext = 0 0 1 0 1 0 0 1
Key = 1 0 1 0 1 1 0 0
------------------- ciphertext = 1 0 0 0 0 1 0 1
Advantage:

 Encryption method is completely unbreakable for a ciphertext only attack.
Disadvantages

 It requires a very long key which is expensive to produce and expensive to transmit.
 Once a key is used, it is dangerous to reuse it for a second message; any knowledge on

the first message would give knowledge of the second.

TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a cipher text symbol for a plaintext
symbol. A very different kind of mapping is achieved by performing some sort of permutation on
the plaintext letters. This technique is referred to as a transposition cipher.

Rail fence
is simplest of such cipher, in which the plaintext is written down as a sequence of diagonals and
then read off as a sequence of rows.
Plaintext = meet at the school house
To encipher this message with a rail fence of depth 2, we write the message as follows:
m e a t e c o l o s
e t t h s h o h u e
The encrypted message is
MEATECOLOSETTHSHOHUE

Row Transposition Ciphers-
A more complex scheme is to write the message in a rectangle, row by row, and read the
message off, column by column, but permute the order of the columns. The order of columns
then becomes the key of the algorithm.
e.g., plaintext = meet at the school house
Key = 4 3 1 2 5 6 7
PT = m e e t a t t
h e s c h o o
l h o u s e
CT = ESOTCUEEHMHLAHSTOETO

A pure transposition cipher is easily recognized because it has the same letter frequencies as the
original plaintext. The transposition cipher can be made significantly more secure by performing
more than one stage of transposition. The result is more complex permutation that is not easily
reconstructed.

Feistel cipher structure
The input to the encryption algorithm are a plaintext block of length 2w bits and a key K. The
plaintext block is divided into two halves L0 and R0. The two halves of the data pass through
„n rounds of processing and then combine to produce the ciphertext block. Each round „i has‟ (since a=0, b=1, c=2 and so on). To aid in ‟ (since a=0, b=1, c=2 and so on). To aid in
inputs Li-1 and Ri-1, derived from the previous round, as well as the subkey Ki, derived from the
overall key K. in general, the subkeys Ki are different from K and from each other.

All rounds have the same structure. A substitution is performed on the left half of the data (as
similar to S-DES). This is done by applying a round function F to the right half of the data and
then taking the XOR of the output of that function and the left half of the data. The round
function has the same general structure for each round but is parameterized by the round sub key
ki.

Following this substitution, a permutation is performed that consists of the interchange of the
two halves of the data. This structure is a particular form of the substitution-permutation
network.The exact realization of a Feistel network depends on the choice of the following
parameters and design features:

Block size - Increasing size improves security, but slows cipher
Key size - Increasing size improves security, makes exhaustive key searching harder, but may
slow cipher
Number of rounds - Increasing number improves security, but slows cipher
Subkey generation - Greater complexity can make analysis harder, but slows cipher
Round function - Greater complexity can make analysis harder, but slows cipher
Fast software en/decryption & ease of analysis - are more recent concerns for practical use and
testing.

Fig: Classical Feistel Network

Fig: Feistel encryption and decryption

The process of decryption is essentially the same as the encryption process. The rule is as
follows:
use the cipher text as input to the algorithm, but use the subkey ki in reverse order. i.e., kn in the
first round, kn-1 in second round and so on. For clarity, we use the notation LEi and REi for data
traveling through the decryption algorithm. The diagram below indicates that, at each round, the
intermediate value of the decryption process is same (equal) to the corresponding value of the
encryption process with two halves of the value swapped.
i.e., REi || LEi (or) equivalently RD16-i || LD16-i

After the last iteration of the encryption process, the two halves of the output are swapped, so
that the cipher text is RE16 || LE16. The output of that round is the cipher text. Now take the
cipher text and use it as input to the same algorithm. The input to the first round is RE16 || LE16,
which is equal to the 32-bit swap of the output of the sixteenth round of the encryption process.

Now we will see how the output of the first round of the decryption process is equal to a 32-bit
swap of the input to the sixteenth round of the encryption process. First consider the encryption
process,

LE16 = RE15
RE16 = LE15 F (RE15, K16) On the decryption side,
LD1 =RD0 = LE16 =RE15
RD1 = LD0 F (RD0, K16)
= RE16 F (RE15, K16)
= [LE15 F (RE15, K16)] F (RE15, K16)
= LE15
Therefore, LD1 = RE15
RD1 = LE15 In general, for the ith iteration of the encryption algorithm, LEi = REi-1
REi = LEi-1 F (REi-1, Ki)
Finally, the output of the last round of the decryption process is RE0 || LE0. A 32-bit swap
recovers the original plaintext.

STEGANOGRAPHY

A plaintext message may be hidden in any one of the two ways. The methods of steganography
conceal the existence of the message, whereas the methods of cryptography render the message
unintelligible to outsiders by various transformations of the text.

A simple form of steganography, but one that is time consuming to construct is one in which an
arrangement of words or letters within an apparently innocuous text spells out the real message.
e.g., (i) the sequence of first letters of each word of the overall message spells out the real
(Hidden) message.
(ii) Subset of the words of the overall message is used to convey the hidden message.

Various other techniques have been used historically, some of them are

Character marking – selected letters of printed or typewritten text are overwritten in pencil.
The marks are ordinarily not visible unless the paper is held to an angle to bright light.
Invisible ink – a number of substances can be used for writing but leave no visible trace until
heat or some chemical is applied to the paper.
Pin punctures – small pin punctures on selected letters are ordinarily not visible unless the
paper is held in front of the light. Typewritten correction ribbon – used between the lines typed
with a black ribbon, the results of typing with the correction tape are visible only under a strong
light.
Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of
typing with the correction tape are visible only under a strong light.

Drawbacks of steganography
 Requires a lot of overhead to hide a relatively few bits of information.
 Once the system is discovered, it becomes virtually worthless.

INFORMATION THEORY

Information theory is a branch of science that deals with the analysis of a communications
system. We will study digital communications – using a file (or network protocol) as the channel
Claude Shannon Published a landmark paper in 1948 that was the beginning of the branch of
information theory We are interested in communicating information from a source to a
destination In our case, the messages will be a sequence of binary digits Does anyone know the
term for a binary digit.

One detail that makes communicating difficult is noise noise introduces uncertainty Suppose I
wish to transmit one bit of information what are all of the possibilities tx 0, rx 0 - good tx 0, rx 1
- error tx 1, rx 0 - error tx 1, rx 1 - good Two of the cases above have errors – this is where
probability fits into the picture In the case of steganography, the noise may be due to attacks on
the hiding algorithm. Claude Shannon introduced the idea of self-information.

 Suppose we have an event X, where Xi represents a particular outcome of the

Consider flipping a fair coin, there are two equiprobable outcomes: say X0 = heads, P0 = 1/2,
X1 = tails, P1 = 1/2 The amount of self-information for any single result is 1 bit. In other words,
the number of bits required to communicate the result of the event is 1 bit. When outcomes are
equally likely, there is a lot of information in the result. The higher the likelihood of a particular
outcome, the less information that outcome conveys However, if the coin is biased such that it
lands with heads up 99% of the time, there is not much information conveyed when we flip the
coin and it lands on heads. Suppose we have an event X, where Xi represents a particular
outcome of the event. Consider flipping a coin, however, let‘s say there are 3 possible outcomes:
heads (P = 0.49), tails (P=0.49), lands on its side (P = 0.02) – (likely much higher than in reality).

Information

There is no some exact definition, however:Information carries new specific knowledge, which
is definitely new for its recipient; Information is always carried by some specific carrier in
different forms (letters, digits, different specific symbols, sequences of digits, letters, and
symbols , etc.); Information is meaningful only if the recipient is able to interpret it. According
to the Oxford English Dictionary, the earliest historical meaning of the word information in
English was the act of informing, or giving form or shape to the mind. The English word was
apparently derived by adding the common "noun of action" ending "-action the information
materialized is a message.

Information is always about something (size of a parameter, occurrence of an event, etc). Viewed
in this manner, information does not have to be accurate; it may be a truth or a lie. Even a
disruptive noise used to inhibit the flow of communication and create misunderstanding would in
this view be a form of information. However, generally speaking, if the amount of information in
the received message increases, the message is more accurate. Information Theory How we can
measure the amount of information? How we can ensure the correctness of information? What to
do if information gets corrupted by errors? How much memory does it require to store
information? Basic answers to these questions that formed a solid background of the modern
information theory were given by the great American mathematician, electrical engineer, and
computer scientist Claude E. Shannon in his paper ―A Mathematical Theory of
Communication‖ published in ―The Bell System Technical Journal in October, 1948.

A noiseless binary channel 0 0 transmits bits without error, What to do if we have a noisy
channel and you want to send information across reliably? Information Capacity Theorem
(Shannon Limit) The information capacity (or channel capacity) C of a continuous channel with
bandwidth BHertz can be perturbed by additive Gaussian white noise of power spectral density
N0/2, C=B log2(1+P/N0B) bits/sec provided bandwidth B satisfies where P is the average
transmitted power P = Eb Rb (for an ideal system, Rb= C). Eb is the transmitted energy per bit,
Rb is transmission rate.

CRYPTOSYSTEMS

A cryptosystem is an implementation of cryptographic techniques and their accompanying
infrastructure to provide information security services. A cryptosystem is also referred to as a
cipher system.

Let us discuss a simple model of a cryptosystem that provides confidentiality to the information
being transmitted. This basic model is depicted in the illustration below −

The illustration shows a sender who wants to transfer some sensitive data to a receiver in such a
way that any party intercepting or eavesdropping on the communication channel cannot extract
the data. The objective of this simple cryptosystem is that at the end of the process, only the
sender and the receiver will know the plaintext.

Components of a Cryptosystem

The various components of a basic cryptosystem are as follows −

Plaintext. It is the data to be protected during transmission.
Encryption Algorithm. It is a mathematical process that produces a ciphertext for any given
plaintext and encryption key. It is a cryptographic algorithm that takes plaintext and an
encryption key as input and produces a ciphertext.
Ciphertext. It is the scrambled version of the plaintext produced by the encryption algorithm
using a specific the encryption key. The ciphertext is not guarded. It flows on public channel. It
can be intercepted or compromised by anyone who has access to the communication channel.
Decryption Algorithm. It is a mathematical process, that produces a unique plaintext for any
given ciphertext and decryption key. It is a cryptographic algorithm that takes a ciphertext and a
decryption key as input, and outputs a plaintext. The decryption algorithm essentially reverses
the encryption algorithm and is thus closely related to it.
Encryption Key. It is a value that is known to the sender. The sender inputs the encryption key
into the encryption algorithm along with the plaintext in order to compute the ciphertext.
Decryption Key. It is a value that is known to the receiver. The decryption key is related to the
encryption key, but is not always identical to it. The receiver inputs the decryption key into the
decryption algorithm along with the ciphertext in order to compute the plaintext.

For a given cryptosystem, a collection of all possible decryption keys is called a key space.

An interceptor anattacker is an unauthorized entity who attempts to determine the plaintext. He
can see the ciphertext and may know the decryption algorithm. He, however, must never know
the decryption key.

Types of Cryptosystems
Fundamentally, there are two types of cryptosystems based on the manner in which
encryptiondecryption is carried out in the system −

 Symmetric Key Encryption
 Asymmetric Key Encryption

The main difference between these cryptosystems is the relationship between the encryption and
the decryption key. Logically, in any cryptosystem, both the keys are closely associated. It is
practically impossible to decrypt the ciphertext with the key that is unrelated to the encryption
key.

Symmetric Key Encryption
The encryption process where same keys are used for encrypting and decrypting the information
is known as Symmetric Key Encryption.
The study of symmetric cryptosystems is referred to as symmetric cryptography. Symmetric
cryptosystems are also sometimes referred to as secret key cryptosystems.
A few well-known examples of symmetric key encryption methods are − Digital Encryption
Standard DES, Triple-DES 3DES, IDEA, and BLOWFISH.

Prior to 1970, all cryptosystems employed symmetric key encryption. Even today, its relevance
is very high and it is being used extensively in many cryptosystems. It is very unlikely that this
encryption will fade away, as it has certain advantages over asymmetric key encryption.
The salient features of cryptosystem based on symmetric key encryption are −

 Persons using symmetric key encryption must share a common key prior to exchange of
information.

 Keys are recommended to be changed regularly to prevent any attack on the system.
 A robust mechanism needs to exist to exchange the key between the communicating

parties. As keys are required to be changed regularly, this mechanism becomes expensive
and cumbersome.

 In a group of n people, to enable two-party communication between any two persons, the
number of keys required for group is n × n– 1/2.

 Length of Key numberofbits in this encryption is smaller and hence, process of
encryptiondecryption is faster than asymmetric key encryption.

 Processing power of computer system required to run symmetric algorithm is less.

Challenge of Symmetric Key Cryptosystem
There are two restrictive challenges of employing symmetric key cryptography.

Key establishment − Before any communication, both the sender and the receiver need to agree
on a secret symmetric key. It requires a secure key establishment mechanism in place.
Trust Issue − Since the sender and the receiver use the same symmetric key, there is an implicit
requirement that the sender and the receiver ‘trust’ each other. For example, it may happen that
the receiver has lost the key to an attacker and the sender is not informed.

These two challenges are highly restraining for modern day communication. Today, people need
to exchange information with non-familiar and non-trusted parties. For example, a
communication between online seller and customer. These limitations of symmetric key
encryption gave rise to asymmetric key encryption schemes.

Asymmetric Key Encryption
The encryption process where different keys are used for encrypting and decrypting the
information is known as Asymmetric Key Encryption. Though the keys are different, they are
mathematically related and hence, retrieving the plaintext by decrypting ciphertext is feasible.
The process is depicted in the following illustration −

Asymmetric Key Encryption was invented in the 20 th century to come over the necessity of
preshared secret key between communicating persons. The salient features of this encryption
scheme are as follows −

 Every user in this system needs to have a pair of dissimilar keys, private key and public
key. These keys are mathematically related − when one key is used for encryption, the
other can decrypt the ciphertext back to the original plaintext.

 It requires to put the public key in public repository and the private key as a well-guarded
secret. Hence, this scheme of encryption is also called Public Key Encryption.

 Though public and private keys of the user are related, it is computationally not feasible
to find one from another. This is a strength of this scheme.

 When Host1 needs to send data to Host2, he obtains the public key of Host2 from
repository, encrypts the data, and transmits.

 Host2 uses his private key to extract the plaintext.
 Length of Keys numberofbits in this encryption is large and hence, the process of

encryptiondecryption is slower than symmetric key encryption.
 Processing power of computer system required to run asymmetric algorithm is higher.

Symmetric cryptosystems are a natural concept. In contrast, public-key cryptosystems are quite
difficult to comprehend.
You may think, how can the encryption key and the decryption key are ‘related’, and yet it is
impossible to determine the decryption key from the encryption key? The answer lies in the
mathematical concepts. It is possible to design a cryptosystem whose keys have this property.
The concept of public-key cryptography is relatively new. There are fewer public-key algorithms
known than symmetric algorithms.

Challenge of Public Key Cryptosystem
Public-key cryptosystems have one significant challenge − the user needs to trust that the public
key that he is using in communications with a person really is the public key of that person and
has not been spoofed by a malicious third party.
This is usually accomplished through a Public Key Infrastructure PKI consisting a trusted third
party. The third party securely manages and attests to the authenticity of public keys. When the
third party is requested to provide the public key for any communicating person X, they are
trusted to provide the correct public key.
The third party satisfies itself about user identity by the process of attestation, notarization, or
some other process − that X is the one and only, or globally unique, X. The most common
method of making the verified public keys available is to embed them in a certificate which is
digitally signed by the trusted third party.

Relation between Encryption Schemes
A summary of basic key properties of two types of cryptosystems is given below −

Due to the advantages and disadvantage of both the systems, symmetric key and public-key
cryptosystems are often used together in the practical information security systems.

Kerckhoff’s Principle for Cryptosystem
In the 19 th century, a Dutch cryptographer A. Kerckhoff furnished the requirements of a good
cryptosystem. Kerckhoff stated that a cryptographic system should be secure even if everything
about the system, except the key, is public knowledge. The six design principles defined by
Kerckhoff for cryptosystem are −

 The cryptosystem should be unbreakable practically, if not mathematically.
 Falling of the cryptosystem in the hands of an intruder should not lead to any

compromise of the system, preventing any inconvenience to the user.
 The key should be easily communicable, memorable, and changeable.
 The ciphertext should be transmissible by telegraph, an unsecure channel.
 The encryption apparatus and documents should be portable and operable by a single

person.
 Finally, it is necessary that the system be easy to use, requiring neither mental strain nor

the knowledge of a long series of rules to observe.

The second rule is currently known as Kerckhoff principle. It is applied in virtually all the
contemporary encryption algorithms such as DES, AES, etc. These public algorithms are
considered to be thoroughly secure. The security of the encrypted message depends solely on the
security of the secret encryption key.
Keeping the algorithms secret may act as a significant barrier to cryptanalysis. However, keeping
the algorithms secret is possible only when they are used in a strictly limited circle.
In modern era, cryptography needs to cater to users who are connected to the Internet. In such
cases, using a secret algorithm is not feasible, hence Kerckhoff principles became essential
guidelines for designing algorithms in modern cryptography.

CRYPTANALYSIS

The process of attempting to discover X or K or both is known as cryptanalysis. The strategy
used by the cryptanalysis depends on the nature of the encryption scheme and the information
available to the cryptanalyst.

There are various types of cryptanalytic attacks based on the amount of information known to
the cryptanalyst.
Cipher text only – A copy of cipher text alone is known to the cryptanalyst.
Known plaintext – The cryptanalyst has a copy of the cipher text and the corresponding
plaintext.
Chosen plaintext – The cryptanalysts gains temporary access to the encryption machine. They
cannot open it to find the key, however; they can encrypt a large number of suitably chosen
plaintexts and try to use the resulting cipher texts to deduce the key.
Chosen cipher text – The cryptanalyst obtains temporary access to the decryption machine, uses
it to decrypt several string of symbols, and tries to use the results to deduce the key.

UNIT - II

Symmetric Block Encryption Algorithms

Data Encryption Standard (DES): An encryption algorithm that encrypts data with a 56-bit,
randomly generated symmetric key. DES is not a secure encryption algorithm and it was cracked
many times. Data Encryption Standard (DES) was developed by IBM and the U.S. Government
together. DES is a block encryption algorithm.

Data Encryption Standard XORed (DESX): DESX is a stronger variation of the DES encryption
algorithm. In DESX, the input plaintext is bitwise XORed with 64 bits of additional key material
before encryption with DES and the output is also bitwise XORed with another 64 bits of key
material.

Triple DES (3DES): Triple DES was developed from DES, uses a 64-bit key consisting of 56
effective key bits and 8 parity bits. In 3DES, DES encryption is applied three times to the
plaintext. The plaintext is encrypted with key A, decrypted with key B, and encrypted again with
key C. 3DES is a block encryption algorithm.

RC2 and RC5: Ronald Rivest (RSA Labs), developed these algorithms. They are block
encryption algorithms with variable block and key sizes. It is difficult to break if the attacker
does not know the original sizes when attempting to decrypt captured data.

RC4: A variable key-size stream cipher with byte-oriented operations. The algorithm is based on
the use of a random permutation and is commonly used for the encryption of traffic to and from
secure Web sites using the SSL protocol.

Advanced Encryption Standard (AES): Advanced Encryption Standard (AES) is a newer and
stronger encryption standard, which uses the Rijndael (pronounced Rhine-doll) algorithm. This
algorithm was developed by Joan Daemen and Vincent Rijmen of Belgium. AES will eventually
displace DESX and 3DES. AES is capable to use 128-bit, 192-bit, and 256-bit keys.

International Data Encryption Algorithm (IDEA): IDEA encryption algorithm is the European
counterpart to the DES encryption algorithm. IDEA is a block cipher, designed by Dr. X. Lai and
Professor J. Massey. It operates on a 64-bit plaintext block and uses a 128-bit key. IDEA uses a
total of eight rounds in which it XOR’s, adds and multiplies four sub-blocks with each other, as
well as six 16-bit sub-blocks of key material.

Blowfish: Blowfish is a symmetric block cipher, designed by Bruce Schneier. Blowfish has a 64-
bit block size and a variable key length from 32 up to 448 bits. Bruce Schneier later created
Twofish, which performs a similar function on 128-bit blocks.

CAST: CAST is an algorithm developed by Carlisle Adams and Stafford Tavares. It’s used in
some products offered by Microsoft and IBM. CAST uses a 40-bit to 128-bit key, and it’s very
fast and efficient.

Note:

Block Cipher: A block cipher divides data into chunks, pads the last chunk if necessary, and then
encrypts each chunk in its turn.

Streaming Cipher. A streaming cipher uses a series of random numbers seeded with a cipher key
to encrypt a stream of bits.

Stream Ciphers

In this scheme, the plaintext is processed one bit at a time i.e. one bit of plaintext is taken, and a
series of operations is performed on it to generate one bit of ciphertext. Technically, stream
ciphers are block ciphers with a block size of one bit.

RC4 Encryption Algorithm

RC4 is a stream cipher and variable length key algorithm. This algorithm encrypts one byte at a
time (or larger units on a time).

A key input is pseudorandom bit generator that produces a stream 8-bit number that is
unpredictable without knowledge of input key, The output of the generator is called key-stream,
is combined one byte at a time with the plaintext stream cipher using X-OR operation.

Example:

RC4 Encryption

10011000 ? 01010000 = 11001000

RC4 Decryption

11001000 ? 01010000 = 10011000

Key-Generation Algorithm –

A variable-length key from 1 to 256 byte is used to initialize a 256-byte state vector S, with
elements S[0] to S[255]. For encryption and decryption, a byte k is generated from S by selecting
one of the 255 entries in a systematic fashion, then the entries in S are permuted again.

1. Key-Scheduling Algorithm:

Initialization: The entries of S are set equal to the values from 0 to 255 in ascending order,
a temporary vector T, is created.

If the length of the key k is 256 bytes, then k is assigned to T. Otherwise, for a key with
length(k_len) bytes, the first k_len elements of T as copied from K and then K is repeated
as many times as necessary to fill T. The idea is illustrated as follow:

for
 i = 0 to 255 do S[i] = i;
T[i] = K[i mod k_len];

we use T to produce the initial permutation of S. Starting with S[0] to S[255], and for each
S[i] algorithm swap it with another byte in S according to a scheme dictated by T[i], but S
will still contain values from 0 to 255 :

j = 0;
for
 i = 0 to 255 do
 {
 j = (j + S[i] + T[i])mod 256;
 Swap(S[i], S[j]);
 }

2. Pseudo random generation algorithm (Stream Generation):

Once the vector S is initialized, the input key will not be used. In this step, for each S[i]
algorithm swap it with another byte in S according to a scheme dictated by the current
configuration of S. After reaching S[255] the process continues, starting from S[0] again

i, j = 0;
while (true)
 i = (i + 1)mod 256;
j = (j + S[i])mod 256;
Swap(S[i], S[j]);
t = (S[i] + S[j])mod 256;
k = S[t];

3. Encrypt using X-Or():

Block Cipher Modes of Operation

Here, we discuss the different modes of operation of a block cipher. These are procedural rules
for a generic block cipher. Interestingly, the different modes result in different properties being
achieved which add to the security of the underlying block cipher.

A block cipher processes the data blocks of fixed size. Usually, the size of a message is larger
than the block size. Hence, the long message is divided into a series of sequential message
blocks, and the cipher operates on these blocks one at a time.

Electronic Code Book (ECB) Mode

This mode is a most straightforward way of processing a series of sequentially listed message
blocks.

Operation

 The user takes the first block of plaintext and encrypts it with the key to produce the first
block of ciphertext.

 He then takes the second block of plaintext and follows the same process with same key
and so on so forth.

The ECB mode is deterministic, that is, if plaintext block P1, P2,…, Pm are encrypted twice
under the same key, the output ciphertext blocks will be the same.

In fact, for a given key technically we can create a codebook of ciphertexts for all possible
plaintext blocks. Encryption would then entail only looking up for required plaintext and select
the corresponding ciphertext. Thus, the operation is analogous to the assignment of code words
in a codebook, and hence gets an official name − Electronic Codebook mode of operation
(ECB). It is illustrated as follows −

Analysis of ECB Mode

In reality, any application data usually have partial information which can be guessed. For
example, the range of salary can be guessed. A ciphertext from ECB can allow an attacker to
guess the plaintext by trial-and-error if the plaintext message is within predictable.

For example, if a ciphertext from the ECB mode is known to encrypt a salary figure, then a
small number of trials will allow an attacker to recover the figure. In general, we do not wish to
use a deterministic cipher, and hence the ECB mode should not be used in most applications.

Cipher Block Chaining (CBC) Mode

CBC mode of operation provides message dependence for generating ciphertext and makes the
system non-deterministic.

Operation

The operation of CBC mode is depicted in the following illustration. The steps are as follows −

 Load the n-bit Initialization Vector (IV) in the top register.

 XOR the n-bit plaintext block with data value in top register.

 Encrypt the result of XOR operation with underlying block cipher with key K.

 Feed ciphertext block into top register and continue the operation till all plaintext blocks
are processed.

 For decryption, IV data is XORed with first ciphertext block decrypted. The first
ciphertext block is also fed into to register replacing IV for decrypting next ciphertext
block.

Analysis of CBC Mode

In CBC mode, the current plaintext block is added to the previous ciphertext block, and then the
result is encrypted with the key. Decryption is thus the reverse process, which involves
decrypting the current ciphertext and then adding the previous ciphertext block to the result.

Advantage of CBC over ECB is that changing IV results in different ciphertext for identical
message. On the drawback side, the error in transmission gets propagated to few further block
during decryption due to chaining effect.

It is worth mentioning that CBC mode forms the basis for a well-known data origin
authentication mechanism. Thus, it has an advantage for those applications that require both
symmetric encryption and data origin authentication.

Cipher Feedback (CFB) Mode

In this mode, each ciphertext block gets ‘fed back’ into the encryption process in order to
encrypt the next plaintext block.

Operation

The operation of CFB mode is depicted in the following illustration. For example, in the present
system, a message block has a size ‘s’ bits where 1 < s < n. The CFB mode requires an
initialization vector (IV) as the initial random n-bit input block. The IV need not be secret. Steps
of operation are −

 Load the IV in the top register.

 Encrypt the data value in top register with underlying block cipher with key K.

 Take only ‘s’ number of most significant bits (left bits) of output of encryption process
and XOR them with ‘s’ bit plaintext message block to generate ciphertext block.

 Feed ciphertext block into top register by shifting already present data to the left and
continue the operation till all plaintext blocks are processed.

 Essentially, the previous ciphertext block is encrypted with the key, and then the result is
XORed to the current plaintext block.

 Similar steps are followed for decryption. Pre-decided IV is initially loaded at the start of
decryption.

Analysis of CFB Mode

CFB mode differs significantly from ECB mode, the ciphertext corresponding to a given
plaintext block depends not just on that plaintext block and the key, but also on the previous
ciphertext block. In other words, the ciphertext block is dependent of message.

CFB has a very strange feature. In this mode, user decrypts the ciphertext using only the
encryption process of the block cipher. The decryption algorithm of the underlying block cipher
is never used.

Apparently, CFB mode is converting a block cipher into a type of stream cipher. The encryption
algorithm is used as a key-stream generator to produce key-stream that is placed in the bottom
register. This key stream is then XORed with the plaintext as in case of stream cipher.

By converting a block cipher into a stream cipher, CFB mode provides some of the
advantageous properties of a stream cipher while retaining the advantageous properties of a
block cipher.

On the flip side, the error of transmission gets propagated due to changing of blocks.

Output Feedback (OFB) Mode

It involves feeding the successive output blocks from the underlying block cipher back to it.
These feedback blocks provide string of bits to feed the encryption algorithm which act as the
key-stream generator as in case of CFB mode.

The key stream generated is XOR-ed with the plaintext blocks. The OFB mode requires an IV
as the initial random n-bit input block. The IV need not be secret.

The operation is depicted in the following illustration −

Counter (CTR) Mode

It can be considered as a counter-based version of CFB mode without the feedback. In this
mode, both the sender and receiver need to access to a reliable counter, which computes a new
shared value each time a ciphertext block is exchanged. This shared counter is not necessarily a
secret value, but challenge is that both sides must keep the counter synchronized.

Operation

Both encryption and decryption in CTR mode are depicted in the following illustration. Steps in
operation are −

 Load the initial counter value in the top register is the same for both the sender and the
receiver. It plays the same role as the IV in CFB (and CBC) mode.

 Encrypt the contents of the counter with the key and place the result in the bottom
register.

 Take the first plaintext block P1 and XOR this to the contents of the bottom register. The
result of this is C1. Send C1 to the receiver and update the counter. The counter update
replaces the ciphertext feedback in CFB mode.

 Continue in this manner until the last plaintext block has been encrypted.

 The decryption is the reverse process. The ciphertext block is XORed with the output of
encrypted contents of counter value. After decryption of each ciphertext block counter is
updated as in case of encryption.

Analysis of Counter Mode

It does not have message dependency and hence a ciphertext block does not depend on the
previous plaintext blocks.

Like CFB mode, CTR mode does not involve the decryption process of the block cipher. This is
because the CTR mode is really using the block cipher to generate a key-stream, which is
encrypted using the XOR function. In other words, CTR mode also converts a block cipher to a
stream cipher.

The serious disadvantage of CTR mode is that it requires a synchronous counter at sender and
receiver. Loss of synchronization leads to incorrect recovery of plaintext.

However, CTR mode has almost all advantages of CFB mode. In addition, it does not propagate
error of transmission at all.

Location of Encryption Devices

As you should know by now, the most powerful and common approach to countering the threats
to network security is encryption. In using encryption, we need to decide what to encrypt and
where the encryption devices should be located. There are two fundamental alternatives:

PSN

PSN

PSN

PSN

Packet-switching
network

 Link encryption
 End –to-end encryption

There are shown in use over a packet – switching network in Fig. 3.

 =End-to-end encryption Device

 =Link encryption device

PSN =Packet switching node

Figure 3 Encryption across a Packet-Switching Network

Link Encryption

In this scheme, each vulnerable communications link is equipped on both ends with an
encryption device. Thus all traffic over all communications links is secured. Although, this
requires a lot of encryption devices in a large network, it provides a high level of security. One
disadvantage of this approach is that the message must be decrypted each time it enters a packet
switch. This is necessary because the packet switch must read the address (i.e., the virtual circuit
number) in the packet header to route the packet. Thus the message is vulnerable at each switch.
If this is a public packet-switching network (PSN), the user has no control over the security of
the modes.
End-to-End Encryption

In this approach, the encryption process is carried out at the two end systems. The source host or
terminal encrypts the data. The data, in encrypted form, are then transmitted unaltered across the
network to the destination terminal on host. The destination shares a key with the source and so
is able to decrypt the data. This approach would seem to secure the transmission against attacks

on the network links on switches. However, the host may only encrypt the used data position of
the packet and must leave the header in the clear, so that it can be read by the network.

Note 1 – With end-to-end encryption, the user data are secure. However, the traffic pattern is not,
because packet headers are transmitted in the.

Note 2 – To achieve greater security, both link and end-to-end encryptions are needed.

Key Distribution

For symmetrical encryption systems to work, the two parties must have the same key, and that
key must be protected from access by others. Furthermore, frequent key changes are usually
desirable to limit the amount of data compromised if an opponent, Oscar, leaves the key.
Therefore, the strength of any cryptographic system rests with the key distribution technique.
That is, the means of delivering a key to two parties that wish to exchange data securely.

Key distribution can be achieved in a number of ways. For two parties, Alice and Bob:

1. A key could be selected by Alice and physically delivered to Bob:

2. A 3rd party could select the key and physically deliver it to Alice and Bob.

3. If Alice and Bob have previously and recently used a key, one party could transmit the
new key to the other, encrypted using the old key.

4. If Alice and Bob each have an encrypted connection to a trusted 3rd party, named Casey, he
could deliver a key on the encrypted links to Alice and Bob.

Note 3 – Option 1 and 2 call for manual delivery of a key. This is seasonal for link encryption.
However, for end-to-end encryption, manual delivery is awkward. In a distributed system, any
given host on terminal may need to engage in exchange with many other hosts and terminal over
time. Thus each device needs a number of keys, supplied dynamically. The problem becomes
quite difficult is a wide area distributed system.

Note 4 – Option 3 is a possibility for either link encryption on end-to-end encryption, but it an
opponent, Oscar, ever succeeds in gaining access to one key, then all subsequent keys are
revealed.

Note 5 – To provide keys for end-to-end encryption, option 4 is preferable.
Key distribution Center(KDC)

Figure 4 shows an implementation that uses option 4 for end-to-end encryption. The trusted third
party (TTP) becomes known as a key distribution center (KDC). The configuration consists of
the following elements:

FEP

FEP

Host

KDC

FEP
Host

1

2
3

4

Network

1. Host sends packet requesting
connection

2. Front end buffers packet: asks
KDC for session key

3. KDC distributes session key to
 both front ends

4. Buffered packet transmitted

FEP =Front-end processor
KDC =key distribution center

Figure 4 Automatic Key Distribution for Connection-Oriented Protocol

1. KDC – Also known as key exchange authority or key exchange center, determine
which systems are allowed to communicate with each other securely. When permission
is granted, the KDC provides a one-time session key for that connection. The session
keys are used for the duration of a session. At the conclusion of the session, or
connection, the session key is destroyed.

2. FEP – The front-end procession (FEP) performs end-to-end encryption and obtains
session keys on behalf of its host on terminal.

The steps involved in establishing a connection are shown in Fig. 4.

Step 1 – When one host wishes to set up a connection to another host, it transmit a connection
sequent packet.

Step 2 – The FEP saves that packet and applies to the KDC for permission to establish the
connection. The communications between the FEP and the KDC is encrypted using a master key
shared only by the FEP and the KDC.

Step 3 – If the KDC approves the connection sequent, it generates the session key and delivers it
to the two appropriate FEPs, using a unique permanent key for each FEP.

Step 4 – The requesting FEP can now release the connection sequent packet, and a connection is
set up between the two and systems. All used data exchanged between the two end systems are
encrypted by their respective FEPs using the one-time session key.

Note 6 – The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of terminal users to access a number of hosts and for
the hosts to exchange data with each other. Kerberos, used extensively in Microsoft Windows
2000, is modeled on a KDC.

Note 7 – In general, a KDC supporting n sites, where each site needs a secret key with every
other site, must make almost n2/2 keys. This means that a KDC supporting 1,000 sites must make
almost 500,000 keys, an unmanageable number of keys.

Note 8 – The KDC is often burdened with extensive key management and can become a
bottleneck. Additionally, if the KDC also acts as a key escrow agent, the KDC itself is an
attractive target (e.g., for a distributed denial-of-service attack). For these reasons, the
symmetrical encryption should be avoided altogether. Another approach to security is the public-
key encryption, which makes key distribution much easier.

Message Authentication

Encryption protects against passive attack (eavesdropping). A different requirement is to protect
against active attack (falsification of data and transactions). Protection against such attacks is
known as message authentication.

A message, file, document, or other collection of data is said to be authentic when it is genuine
and came from its alleged source. Message authentication is a procedure that allows
communicating parties to verify that received message is authentic. The two important aspects
are to verify that the contents of the message have not been altered and that the source is
authentic. We may also wish to verify a message’s timeliness (it has been artificially delayed and
replayed) and sequence relative to other messages flowing between two parties.

1. Authentication Using Conventional Encryption

It is possible to perform authentication simply by the use of conventional encryption. If we
assume that only the sender and receiver share a key (which is as it should be), then only the
genuine sender would be able to encrypt a message successfully for the other participant.
Furthermore, if the message includes an error-detection code and a sequence number, the
receiver is assured that no alterations have been made and that sequencing is proper. If the
message also includes a timestamp, the receiver is assured that the message has not been delayed
beyond that normally expected for network transit.

2. Message Authentication without Message Encryption

We examine several approaches to message authentication that do not rely on encryption. In all
of these approaches, an authentication tag is generated and appended to each message for
transmission. The message itself is not encrypted and can be read at the destination independent
of the authentication function at the destination.

Message Authentication Code (MAC)

MAC algorithm is a symmetric key cryptographic technique to provide message authentication.
For establishing MAC process, the sender and receiver share a symmetric key K.

Essentially, a MAC is an encrypted checksum generated on the underlying message that is sent
along with a message to ensure message authentication.

The process of using MAC for authentication is depicted in the following illustration −

Let us now try to understand the entire process in detail −

 The sender uses some publicly known MAC algorithm, inputs the message and the secret
key K and produces a MAC value.

 Similar to hash, MAC function also compresses an arbitrary long input into a fixed
length output. The major difference between hash and MAC is that MAC uses secret key
during the compression.

 The sender forwards the message along with the MAC. Here, we assume that the
message is sent in the clear, as we are concerned of providing message origin
authentication, not confidentiality. If confidentiality is required then the message needs
encryption.

 On receipt of the message and the MAC, the receiver feeds the received message and the
shared secret key K into the MAC algorithm and re-computes the MAC value.

 The receiver now checks equality of freshly computed MAC with the MAC received
from the sender. If they match, then the receiver accepts the message and assures
himself that the message has been sent by the intended sender.

 If the computed MAC does not match the MAC sent by the sender, the receiver cannot
determine whether it is the message that has been altered or it is the origin that has been
falsified. As a bottom-line, a receiver safely assumes that the message is not the genuine.

Limitations of MAC

There are two major limitations of MAC, both due to its symmetric nature of operation −

 Establishment of Shared Secret.

o It can provide message authentication among pre-decided legitimate users who
have shared key.

o This requires establishment of shared secret prior to use of MAC.

 Inability to Provide Non-Repudiation

o Non-repudiation is the assurance that a message originator cannot deny any
previously sent messages and commitments or actions.

o MAC technique does not provide a non-repudiation service. If the sender and
receiver get involved in a dispute over message origination, MACs cannot
provide a proof that a message was indeed sent by the sender.

o Though no third party can compute the MAC, still sender could deny having sent
the message and claim that the receiver forged it, as it is impossible to determine
which of the two parties computed the MAC.

Both these limitations can be overcome by using the public key based digital signatures
discussed in following section.

Secure Hash Functions and HMAC

Hash Functions

Hash functions are extremely useful and appear in almost all information security applications.

A hash function is a mathematical function that converts a numerical input value into another
compressed numerical value. The input to the hash function is of arbitrary length but output is
always of fixed length.

Values returned by a hash function are called message digest or simply hash values. The
following picture illustrated hash function −

Features of Hash Functions

The typical features of hash functions are −

 Fixed Length Output (Hash Value)

o Hash function coverts data of arbitrary length to a fixed length. This process is
often referred to as hashing the data.

o In general, the hash is much smaller than the input data, hence hash functions are
sometimes called compression functions.

o Since a hash is a smaller representation of a larger data, it is also referred to as
a digest.

o Hash function with n bit output is referred to as an n-bit hash function. Popular
hash functions generate values between 160 and 512 bits.

 Efficiency of Operation

o Generally for any hash function h with input x, computation of h(x) is a fast
operation.

o Computationally hash functions are much faster than a symmetric encryption.

Properties of Hash Functions

In order to be an effective cryptographic tool, the hash function is desired to possess following
properties −

 Pre-Image Resistance

o This property means that it should be computationally hard to reverse a hash
function.

o In other words, if a hash function h produced a hash value z, then it should be a
difficult process to find any input value x that hashes to z.

o This property protects against an attacker who only has a hash value and is trying
to find the input.

 Second Pre-Image Resistance

o This property means given an input and its hash, it should be hard to find a
different input with the same hash.

o In other words, if a hash function h for an input x produces hash value h(x), then
it should be difficult to find any other input value y such that h(y) = h(x).

o This property of hash function protects against an attacker who has an input value
and its hash, and wants to substitute different value as legitimate value in place
of original input value.

 Collision Resistance

o This property means it should be hard to find two different inputs of any length
that result in the same hash. This property is also referred to as collision free
hash function.

o In other words, for a hash function h, it is hard to find any two different inputs x
and y such that h(x) = h(y).

o Since, hash function is compressing function with fixed hash length, it is
impossible for a hash function not to have collisions. This property of collision
free only confirms that these collisions should be hard to find.

o This property makes it very difficult for an attacker to find two input values with
the same hash.

o Also, if a hash function is collision-resistant then it is second pre-image
resistant.

Design of Hashing Algorithms

At the heart of a hashing is a mathematical function that operates on two fixed-size blocks of
data to create a hash code. This hash function forms the part of the hashing algorithm.

The size of each data block varies depending on the algorithm. Typically the block sizes are
from 128 bits to 512 bits. The following illustration demonstrates hash function −

Hashing algorithm involves rounds of above hash function like a block cipher. Each round takes
an input of a fixed size, typically a combination of the most recent message block and the output
of the last round.

This process is repeated for as many rounds as are required to hash the entire message.
Schematic of hashing algorithm is depicted in the following illustration −

Since, the hash value of first message block becomes an input to the second hash operation,
output of which alters the result of the third operation, and so on. This effect, known as
an avalanche effect of hashing.

Avalanche effect results in substantially different hash values for two messages that differ by
even a single bit of data.

Understand the difference between hash function and algorithm correctly. The hash function
generates a hash code by operating on two blocks of fixed-length binary data.

Hashing algorithm is a process for using the hash functions, specifying how the message will be
broken up and how the results from previous message blocks are chained together.

Popular Hash Functions

Let us briefly see some popular hash functions −

Message Digest (MD)

MD5 was most popular and widely used hash function for quite some years.

 The MD family comprises of hash functions MD2, MD4, MD5 and MD6. It was adopted
as Internet Standard RFC 1321. It is a 128-bit hash function.

 MD5 digests have been widely used in the software world to provide assurance about
integrity of transferred file. For example, file servers often provide a pre-computed MD5
checksum for the files, so that a user can compare the checksum of the downloaded file
to it.

 In 2004, collisions were found in MD5. An analytical attack was reported to be
successful only in an hour by using computer cluster. This collision attack resulted in
compromised MD5 and hence it is no longer recommended for use.

Secure Hash Function (SHA)

Family of SHA comprise of four SHA algorithms; SHA-0, SHA-1, SHA-2, and SHA-3. Though
from same family, there are structurally different.

 The original version is SHA-0, a 160-bit hash function, was published by the National
Institute of Standards and Technology (NIST) in 1993. It had few weaknesses and did
not become very popular. Later in 1995, SHA-1 was designed to correct alleged
weaknesses of SHA-0.

 SHA-1 is the most widely used of the existing SHA hash functions. It is employed in
several widely used applications and protocols including Secure Socket Layer (SSL)
security.

 In 2005, a method was found for uncovering collisions for SHA-1 within practical time
frame making long-term employability of SHA-1 doubtful.

 SHA-2 family has four further SHA variants, SHA-224, SHA-256, SHA-384, and SHA-
512 depending up on number of bits in their hash value. No successful attacks have yet
been reported on SHA-2 hash function.

 Though SHA-2 is a strong hash function. Though significantly different, its basic design
is still follows design of SHA-1. Hence, NIST called for new competitive hash function
designs.

 In October 2012, the NIST chose the Keccak algorithm as the new SHA-3 standard.
Keccak offers many benefits, such as efficient performance and good resistance for
attacks.

RIPEMD

The RIPEND is an acronym for RACE Integrity Primitives Evaluation Message Digest. This set
of hash functions was designed by open research community and generally known as a family
of European hash functions.

 The set includes RIPEND, RIPEMD-128, and RIPEMD-160. There also exist 256, and
320-bit versions of this algorithm.

 Original RIPEMD (128 bit) is based upon the design principles used in MD4 and found
to provide questionable security. RIPEMD 128-bit version came as a quick fix
replacement to overcome vulnerabilities on the original RIPEMD.

 RIPEMD-160 is an improved version and the most widely used version in the family.
The 256 and 320-bit versions reduce the chance of accidental collision, but do not have
higher levels of security as compared to RIPEMD-128 and RIPEMD-160 respectively.

Whirlpool

This is a 512-bit hash function.

 It is derived from the modified version of Advanced Encryption Standard (AES). One of
the designer was Vincent Rijmen, a co-creator of the AES.

 Three versions of Whirlpool have been released; namely WHIRLPOOL-0,
WHIRLPOOL-T, and WHIRLPOOL.

Applications of Hash Functions

There are two direct applications of hash function based on its cryptographic properties.

Password Storage

Hash functions provide protection to password storage.

 Instead of storing password in clear, mostly all logon processes store the hash values of
passwords in the file.

 The Password file consists of a table of pairs which are in the form (user id, h(P)).

 The process of logon is depicted in the following illustration −

 An intruder can only see the hashes of passwords, even if he accessed the password. He
can neither logon using hash nor can he derive the password from hash value since hash
function possesses the property of pre-image resistance.

Data Integrity Check

Data integrity check is a most common application of the hash functions. It is used to generate
the checksums on data files. This application provides assurance to the user about correctness of
the data.

The process is depicted in the following illustration −

The integrity check helps the user to detect any changes made to original file. It however, does
not provide any assurance about originality. The attacker, instead of modifying file data, can
change the entire file and compute all together new hash and send to the receiver. This integrity
check application is useful only if the user is sure about the originality of file.

Secure Hash Algorithms

Secure Hash Algorithms, also known as SHA, are a family of cryptographic functions designed
to keep data secured. It works by transforming the data using a hash function: an algorithm that
consists of bitwise operations, modular additions, and compression functions. The hash function
then produces a fixed-size string that looks nothing like the original. These algorithms are
designed to be one-way functions, meaning that once they’re transformed into their respective
hash values, it’s virtually impossible to transform them back into the original data. A few
algorithms of interest are SHA-1, SHA-2, and SHA-3, each of which was successively designed
with increasingly stronger encryption in response to hacker attacks. SHA-0, for instance, is now
obsolete due to the widely exposed vulnerabilities.

A common application of SHA is to encrypting passwords, as the server side only needs to keep
track of a specific user’s hash value, rather than the actual password. This is helpful in case an
attacker hacks the database, as they will only find the hashed functions and not the actual
passwords, so if they were to input the hashed value as a password, the hash function will
convert it into another string and subsequently deny access. Additionally, SHAs exhibit the
avalanche effect, where the modification of very few letters being encrypted causes a big change
in output; or conversely, drastically different strings produce similar hash values. This effect
causes hash values to not give any information regarding the input string, such as its original

https://brilliant.org/wiki/cryptography/
https://brilliant.org/wiki/one-way-functions/?wiki_title=one-way%20functions
https://brilliant.org/wiki/compression-functions/
https://brilliant.org/wiki/modular-additions/?wiki_title=modular%20additions
https://brilliant.org/wiki/bitwise-operations/
https://brilliant.org/wiki/hash-function/

length. In addition, SHAs are also used to detect the tampering of data by attackers, where if a
text file is slightly changed and barely noticeable, the modified file’s hash value will be different
than the original file’s hash value, and the tampering will be rather noticeable.

A small tweak in the original data produces a drastically different encrypted output. This is
called the avalanche effect [1] .

SHA Characteristics

Cryptographic hash functions are utilized in order to keep data secured by providing three
fundamental safety characteristics: pre-image resistance, second pre-image resistance, and
collision resistance.

The cornerstone of cryptographic security lies in the provision of pre-image resistance, which
makes it hard and time-consuming for an attacker to find an original message, m,m, given the
respective hash value, h_mhm. This security is provided by the nature of one-way functions,
which is a key component of SHA. Pre-image resistance is necessary to ward off brute force
attacks from powerful machines.

One-way Function

Alice and Bob are pen pals who share their thoughts via mail. When Alice visited Bob, she gave
him a phone book of her city. In order to keep their messages safe from intruders, Alice tells Bob
that she will encrypt the message. She tells Bob that he will find a bunch of numbers on every
letter, and each sequence of numbers represents a phone number. Bob’s job is to find the phone
number in the book and write down the first letter of the person’s last name. With this function,
Bob is to decrypt the entire message.

To decrypt the message, Bob has to read the entire phone book to find all the numbers on the
letter, whereas Alice can quickly find the letters and their respective phone numbers in order to

https://brilliant.org/wiki/secure-hashing-algorithms/#citation-1
https://brilliant.org/wiki/avalanche-effect/
https://brilliant.org/wiki/one-way-function/

encrypt her message. For this reason, before Bob is able to decrypt the message by hand, Alice
can re-hash the message and keep the data secure. This makes Alice’s algorithm a one-way
function[2].
The second safety characteristic is called second pre-image resistance, granted by SHA when a
message is known, m_1m1, yet it’s hard to find another message, m_2m2, that hashes to the
same value: H_{m_1} = H_{m_2}Hm1=Hm2. Without this characteristic, two different
passwords would yield the same hash value, deeming the original password unnecessary in order
to access secured data.

The last safety characteristic is collision resistance, which is provided by algorithms that make it
extremely hard for an attacker to find two completely different messages that hash to the same
hash value: H_{m_1} = H_{m_2}Hm1=Hm2. In order to provide this characteristic, there must
be a similar number of possible inputs to possible outputs, as more inputs than outputs, by
the pigeonhole principle, will definitively incur potential collisions. For this reason, collision
resistance is necessary, as it implies that finding two inputs that hash to the same hash value is
extremely difficult. Without collision resistance, digital signatures can be compromised as
finding two messages that produce the same hash value may make users believe two documents
were signed by two different people when one person was able to produce a different document
with the same hash value.

Recent cryptographic functions have stronger security characteristics to block off recently
developed techniques such as length extension attacks, where given a hash
value, hash(m)hash(m), and the length of the original message, mm, an attacker can find a
message, m’m’, and calculate the hash value of the concatenation of the original message and the
new message: hash\ (m||m’)hash (m∣∣m’).

As a general guideline, a hash function should be as seemingly random as possible while still
being deterministic and fast to compute.

SHA-1

Secure Hash Algorithm 1, or SHA-1, was developed in 1993 by the U.S. government's
standards agency National Institute of Standards and Technology (NIST). It is widely used in
security applications and protocols, including TLS, SSL, PGP, SSH, IPsec, and S/MIME.

SHA-1 works by feeding a message as a bit string of length less than 2^{64}264 bits, and
producing a 160-bit hash value known as a message digest. Note that the message below is
represented in hexadecimal notation for compactness.

There are two methods to encrypt messages using SHA-1. Although one of the methods saves
the processing of sixty-four 32-bit words, it is more complex and time-consuming to execute, so
the simple method is shown in the example below. At the end of the execution, the algorithm
outputs blocks of 16 words, where each word is made up of 16 bits, for a total of 256 bits.

https://brilliant.org/wiki/collision-resistance/?wiki_title=collision%20resistance
https://brilliant.org/wiki/secure-hashing-algorithms/#citation-2
https://brilliant.org/wiki/hexadecimal-numbers/
https://brilliant.org/wiki/binary-numbers/
https://brilliant.org/wiki/smime/?wiki_title=S/MIME
https://brilliant.org/wiki/ipsec/?wiki_title=IPsec
https://brilliant.org/wiki/ssh/?wiki_title=SSH
https://brilliant.org/wiki/pgp/?wiki_title=PGP
https://brilliant.org/wiki/ssl/
https://brilliant.org/wiki/tls/?wiki_title=TLS
https://brilliant.org/wiki/deterministic-functions/?wiki_title=deterministic
https://brilliant.org/wiki/length-extension-attacks/?wiki_title=length%20extension%20attacks
https://brilliant.org/wiki/pigeonhole-principle/

Pseudocode

Suppose the message ‘abc’ was to be encoded using SHA-1, with the message ‘abc’ in binary
being

01100001 01100010 01100011

and that in hex being

616263.

1) The first step is to initialize five random strings of hex characters that will serve as part of the
hash function (shown in hex):

H0 = 67DE2A01
H1 = BB03E28C
H2 = 011EF1DC
H3 = 9293E9E2
H4= CDEF23A9

2) The message is then padded by appending a 1, followed by enough 0s until the message is 448
bits. The length of the message represented by 64 bits is then added to the end, producing a
message that is 512 bits long:

Padding of string "abc" in bits, finalized by the length of the string, which is 24 bits.

3) The padded input obtained above, MM, is then divided into 512-bit chunks, and each chunk is
further divided into sixteen 32-bit words, W_0 … W_{15}W0…W15. In the case of ‘abc’,
there’s only one chunk, as the message is less than 512-bits total.

4) For each chunk, begin the 80 iterations, ii, necessary for hashing (80 is the determined number
for SHA-1), and execute the following steps on each chunk, Mn:

 For iterations 16 through 79, where 16 ≤ I ≤ 79, perform the following operation:

W(i) = S1(W(i−3)⊕W(i−8)⊕W(i−14)⊕W(i−16)),

https://brilliant.org/wiki/padding/

where XOR, or ⊕, is represented by the following comparison of inputs x and y:

x y Output

0 0 0

1 0 1

0 1 1

1 1 0

 For example, when i is 16, the words chosen are W(13),W(8),W(2),W(0), and the

output is a new word, W(16), so performing the XOR, or ⊕, operation on those words

will give this:

W(0) 01100001 01100010 01100011 10000000

W(2) 00000000 00000000 00000000 00000000

W(8) 00000000 00000000 00000000 00000000

W(13) 00000000 00000000 00000000 00000000

⊕
W(16) 01100001 01100010 01100011 10000000

Circular Shift Operation

Now, the circular shift operation Sn(X) on the word X by n bits, n being an integer
between 0 and 32, is defined by

Sn(X) = (X << n) OR (X >> 32−n),

where X<<n is the left-shift operation, obtained by discarding the leftmost nn bits of X and
padding the result with n zeroes on the right.

X >> 32−n is the right-shift operation obtained by discarding the rightmost n bits of X and
padding the result with nn zeroes on the left. Thus Sn(X) is equivalent to a circular shift
of X by n positions, and in this case the circular left-shift is used.

So, a left shift Sn(W(i)), where W(i) is 10010, would produce 01001, as the rightmost bit 00 is
shifted to the left side of the string. Therefore, W(16) would end up being

11000010 11000100 11000111 000000000.

5) Now, store the hash values defined in step 1 in the following variables:

A = H0

B = H1

C = H2

D = H3

E = H4.

6) For 8080 iterations, where 0 ≤ I ≤ 79, compute

TEMP = S5 ∗ (A) + f(i;B,C,D) + E + W(i) + K(i).

See below for details on the logical function, f, and on the values of K(i). Reassign the following
variables:

E = D
D = C

C = S30(B)

B = A
A = TEMP.

7) Store the result of the chunk’s hash to the overall hash value of all chunks, as shown below,
and proceed to execute the next chunk:

H0 = H0+A
H1 = H1+B
H2 = H2+C
H3 = H3+D
H4 = H4+E.

8) As a final step, when all the chunks have been processed, the message digest is represented as
the 160-bit string comprised of the OR logical operator, ∨, of the 5 hashed values:

HH = S128(H0) ∨ S96(H1) ∨ S64(H2) ∨ S32(H3) ∨ H4.

So, the string ‘abc’ becomes represented by a hash value akin
to a9993e364706816aba3e25717850c26c9cd0d89d.

If the string changed to ‘abcd’, for instance, the hashed value would be drastically different so
attackers cannot tell that it is similar to the original message. The hash value for 'abcd'
is 81fe8bfe87576c3ecb22426f8e57847382917acf.

Functions used in the algorithm

A sequence of logical functions are used in SHA-1, depending on the value of i, where 0 ≤ i ≤79,
and on three 32-bit words B, C, and D, in order to produce a 32-bit output. The following
equations describe the logical functions, where ¬ is the logical NOT, ∨ is the logical OR, ∧ is
the logical AND, and ⊕ is the logical XOR:

f(i;B,C,D) = (B ∧ C)∨((¬B)∧D) for 0≥ i ≥19
f(i;B,C,D) = B ⊕ C ⊕ D for 20≥ i ≥39
f(i;B,C,D) = (B ∧ C) ∨ (B ∧ D)∨ (C ∧ D) for 40≥ i ≥59
f(i;B,C,D) = B ⊕ C ⊕ D for 60≥ i ≥79.

Additionally, a sequence of constant words, shown in hex below, is used in the formulas:

K(i) = 5A827999, where 0≤i≤19
K(i) = 6ED9EBA1, where 20≤i≤39
K(i) = 8F1BBCDC, where 40≤i≤59
K(i) = CA62C1D6, where 60≤i≤79.

Albeit SHA-1 is still widely used, cryptanalysts in 2005 were able to find vulnerabilities on this
algorithm that detrimentally compromised its security. These vulnerabilities came in the form of

https://brilliant.org/wiki/truth-tables/

an algorithm that speedily finds collisions with different inputs, meaning that two distinct inputs
map to the same digest.

As of 2010, many organizations have recommended its replacement by SHA-2 or SHA-3.
Companies like Microsoft, Google, or Mozilla have announced that their browsers will stop
accepting SHA-1 encryption certificates by 2017.

SHA-2

Due to the exposed vulnerabilities of SHA-1, cryptographers modified the algorithm to produce
SHA-2, which consists of not one but two hash functions known as SHA-256 and SHA-512,
using 32- and 64-bit words, respectively. There are additional truncated versions of these hash
functions, known as SHA-224, SHA-384, SHA-512/224, and SHA-512/256, which can be used
for either part of the algorithm.

SHA-1 and SHA-2 differ in several ways; mainly, SHA-2 produces 224- or 256-sized digests,
whereas SHA-1 produces a 160-bit digest; SHA-2 can also have block sizes that contain 1024
bits, or 512 bits, like SHA-1.

Brute force attacks on SHA-2 are not as effective as they are against SHA-1. A brute force
search for finding a message that corresponds to a given digest of length L using brute force
would require 2L evaluations, which makes SHA-2 a lot safer against these kinds of attacks.

Common Attacks

Cryptography wouldn’t be as quickly developed if it weren’t for the attacks that compromise
their effectiveness. One of the most common attacks is known as the prime age attack, where
pre-computed tables of solutions are used in a brute-force manner in order to crack passwords.
The solution against these kinds of attacks is to compose a hash function that would take an
attacker an exorbitant amount of resources, such as millions of dollars or decades of work, to
find a message corresponding to a given hash value.

Most attacks penetrating SHA-1 are collision attacks, where a non-sensical message produces the
same hash value as the original message. Generally, this takes time proportional to 2n/2 to
complete, where n is the length of the message. This is the reason the message digests have
increased in length from 160-bit digests in SHA-1 to 224- or 256-bit digests in SHA-2.

Other attacks exist that attempt to exploit mathematical properties in order to crack hash
functions. Amongst these is the birthday attack, where higher likelihood of collisions are found
when using random attacks with a fixed number of letter combinations (see the pigeonhole
principle), or the rainbow table attack, where a pre-computed hash table is used to reverse a hash
function in order to crack passwords.

https://brilliant.org/wiki/rainbow-table/?wiki_title=rainbow%20table
https://brilliant.org/wiki/pigeon-hole-principle/?wiki_title=pigeonhole%20principle
https://brilliant.org/wiki/pigeon-hole-principle/?wiki_title=pigeonhole%20principle
https://brilliant.org/wiki/birthday-attack/
https://brilliant.org/wiki/primeage-attack/?wiki_title=primeage%20attack
https://brilliant.org/wiki/collisions/

PRINCIPLES OF PUBLIC KEY CRYPTOGRAPHY

The concept of public key cryptography evolved from an attempt to attack two of the most
difficult problems associated with symmetric encryption.

· Key distribution under symmetric key encryption requires either (1) that two
communicants already share a key, which someone has been distributed to them
or (2) the use of a key distribution center.

· Digital signatures.

1. Public key cryptosystems

Public key algorithms rely on one key for encryption and a different but related key for
decryption.

These algorithms have the following important characteristics:

· It is computationally infeasible to determine the decryption key given only the
knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic:

· Either of the two related keys can be used for encryption, with the other used for
decryption.

The essential steps are the following:

· Each user generates a pair of keys to be used for encryption and decryption of
messages.

· Each user places one of the two keys in a public register or other accessible file. This is

the public key. The companion key is kept private.

· If A wishes to send a confidential message to B, A encrypts the message using B s‟s
public key.

· When B receives the message, it decrypts using its private key. No other recipient can

decrypt the message because only B knows B s private key.‟s

With this approach, all participants have access to public keys and private keys are generated
locally by each participant and therefore, need not be distributed. As long as a system controls its
private key, its incoming communication is secure.

Let the plaintext be X=[X1, X2, X3, …,Xm] where m is the number of letters in some finite
alphabets. Suppose A wishes to send a message to B. B generates a pair of keys: a public key
KUb and a private key KRb. KRb is known only to B, whereas KUb is publicly available and
therefore accessible by A.

With the message X and encryption key KUb as input, A forms the cipher text

Y=[Y1, Y2, Y3, … Yn]., i.e., Y=E KUb(X)

The receiver can decrypt it using the private key KRb. i.e., X=D KRb(). The encrypted message
serves as a digital signature.

It is important to emphasize that the encryption process just described does not provide
confidentiality. There is no protection of confidentiality because any observer can decrypt the
message by using the sender s public key.‟s

It is however, possible to provide both the authentication and confidentiality by a double use of
the public scheme.

Initially, the message is encrypted using the sender's private key. This provides the digital
signature. Next, we encrypt again, using the receiver's public key. The final ciphertext
can be decrypted only by the intended receiver, who alone has the matching private key.
Thus confidentiality is provided.

2 Requirements for public key cryptography

It is computationally easy for a party B to generate a pair [KUb , KRb].

It is computationally easy for a sender A, knowing the public key and the message to be
encrypted M, to generate the corresponding ciphertext: C=EKUb(M).

It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private
key to recover the original message: M = DKRb (C) = DKRb [EKUb (M)]

It is computationally infeasible for an opponent, knowing the public key KUb, to determine the
private key KRb.

It is computationally infeasible for an opponent, knowing the public key KUb, and a ciphertext C,
to recover the original message M.

The encryption and decryption functions can be applied in either order: M = EKUb [DKRb (M)
= DKUb [EKRb (M)]

Public key cryptanalysis

Public key encryption scheme is vulnerable to a brute force attack. The counter measure
is to use large keys.

Public Key Cryptography

Unlike symmetric key cryptography, we do not find historical use of public-key cryptography.
It is a relatively new concept.

Symmetric cryptography was well suited for organizations such as governments, military, and
big financial corporations were involved in the classified communication.

With the spread of more unsecure computer networks in last few decades, a genuine need was
felt to use cryptography at larger scale. The symmetric key was found to be non-practical due to
challenges it faced for key management. This gave rise to the public key cryptosystems.

The process of encryption and decryption is depicted in the following illustration −

The most important properties of public key encryption scheme are −

 Different keys are used for encryption and decryption. This is a property which set this
scheme different than symmetric encryption scheme.

 Each receiver possesses a unique decryption key, generally referred to as his private key.

 Receiver needs to publish an encryption key, referred to as his public key.

 Some assurance of the authenticity of a public key is needed in this scheme to avoid
spoofing by adversary as the receiver. Generally, this type of cryptosystem involves
trusted third party which certifies that a particular public key belongs to a specific
person or entity only.

 Encryption algorithm is complex enough to prohibit attacker from deducing the plaintext
from the ciphertext and the encryption (public) key.

 Though private and public keys are related mathematically, it is not be feasible to
calculate the private key from the public key. In fact, intelligent part of any public-key
cryptosystem is in designing a relationship between two keys.

There are three types of Public Key Encryption schemes. We discuss them in following sections
−

RSA Cryptosystem

This cryptosystem is one the initial system. It remains most employed cryptosystem even today.
The system was invented by three scholars Ron Rivest, Adi Shamir, and Len Adleman and
hence, it is termed as RSA cryptosystem.

We will see two aspects of the RSA cryptosystem, firstly generation of key pair and secondly
encryption-decryption algorithms.

Generation of RSA Key Pair

Each person or a party who desires to participate in communication using encryption needs to
generate a pair of keys, namely public key and private key. The process followed in the
generation of keys is described below −

 Generate the RSA modulus (n)

o Select two large primes, p and q.

o Calculate n=p*q. For strong unbreakable encryption, let n be a large number,
typically a minimum of 512 bits.

 Find Derived Number (e)

o Number e must be greater than 1 and less than (p − 1)(q − 1).

o There must be no common factor for e and (p − 1)(q − 1) except for 1. In other
words two numbers e and (p – 1)(q – 1) are coprime.

 Form the public key

o The pair of numbers (n, e) form the RSA public key and is made public.

o Interestingly, though n is part of the public key, difficulty in factorizing a large
prime number ensures that attacker cannot find in finite time the two primes (p &
q) used to obtain n. This is strength of RSA.

 Generate the private key

o Private Key d is calculated from p, q, and e. For given n and e, there is unique
number d.

o Number d is the inverse of e modulo (p - 1)(q – 1). This means that d is the
number less than (p - 1)(q - 1) such that when multiplied by e, it is equal to 1
modulo (p - 1)(q - 1).

o This relationship is written mathematically as follows −

ed = 1 mod (p − 1)(q − 1)

The Extended Euclidean Algorithm takes p, q, and e as input and gives d as output.

Example

An example of generating RSA Key pair is given below. (For ease of understanding, the primes
p & q taken here are small values. Practically, these values are very high).

 Let two primes be p = 7 and q = 13. Thus, modulus n = pq = 7 x 13 = 91.

 Select e = 5, which is a valid choice since there is no number that is common factor of 5
and (p − 1)(q − 1) = 6 × 12 = 72, except for 1.

 The pair of numbers (n, e) = (91, 5) forms the public key and can be made available to
anyone whom we wish to be able to send us encrypted messages.

 Input p = 7, q = 13, and e = 5 to the Extended Euclidean Algorithm. The output will be d
= 29.

 Check that the d calculated is correct by computing −

de = 29 × 5 = 145 = 1 mod 72

 Hence, public key is (91, 5) and private keys is (91, 29).

Encryption and Decryption

Once the key pair has been generated, the process of encryption and decryption are relatively
straightforward and computationally easy.

Interestingly, RSA does not directly operate on strings of bits as in case of symmetric key
encryption. It operates on numbers modulo n. Hence, it is necessary to represent the plaintext as
a series of numbers less than n.

RSA Encryption

 Suppose the sender wish to send some text message to someone whose public key is (n,
e).

 The sender then represents the plaintext as a series of numbers less than n.

 To encrypt the first plaintext P, which is a number modulo n. The encryption process is
simple mathematical step as −

C = Pe mod n

 In other words, the ciphertext C is equal to the plaintext P multiplied by itself e times and
then reduced modulo n. This means that C is also a number less than n.

 Returning to our Key Generation example with plaintext P = 10, we get ciphertext C −

C = 105 mod 91

RSA Decryption

 The decryption process for RSA is also very straightforward. Suppose that the receiver
of public-key pair (n, e) has received a ciphertext C.

 Receiver raises C to the power of his private key d. The result modulo n will be the
plaintext P.

Plaintext = Cd mod n

 Returning again to our numerical example, the ciphertext C = 82 would get decrypted to
number 10 using private key 29 −

Plaintext = 8229 mod 91 = 10

RSA Analysis

The security of RSA depends on the strengths of two separate functions. The RSA cryptosystem
is most popular public-key cryptosystem strength of which is based on the practical difficulty of
factoring the very large numbers.

 Encryption Function − It is considered as a one-way function of converting plaintext
into ciphertext and it can be reversed only with the knowledge of private key d.

 Key Generation − The difficulty of determining a private key from an RSA public key
is equivalent to factoring the modulus n. An attacker thus cannot use knowledge of an
RSA public key to determine an RSA private key unless he can factor n. It is also a one
way function, going from p & q values to modulus n is easy but reverse is not possible.

If either of these two functions are proved non one-way, then RSA will be broken. In fact, if a
technique for factoring efficiently is developed then RSA will no longer be safe.

The strength of RSA encryption drastically goes down against attacks if the number p and q are
not large primes and/ or chosen public key e is a small number.

ElGamal Cryptosystem

Along with RSA, there are other public-key cryptosystems proposed. Many of them are based
on different versions of the Discrete Logarithm Problem.

ElGamal cryptosystem, called Elliptic Curve Variant, is based on the Discrete Logarithm
Problem. It derives the strength from the assumption that the discrete logarithms cannot be
found in practical time frame for a given number, while the inverse operation of the power can
be computed efficiently.

Let us go through a simple version of ElGamal that works with numbers modulo p. In the case
of elliptic curve variants, it is based on quite different number systems.

Generation of ElGamal Key Pair

Each user of ElGamal cryptosystem generates the key pair through as follows −

 Choosing a large prime p. Generally a prime number of 1024 to 2048 bits length is
chosen.

 Choosing a generator element g.

o This number must be between 1 and p − 1, but cannot be any number.

o It is a generator of the multiplicative group of integers modulo p. This means for
every integer m co-prime to p, there is an integer k such that gk=a mod n.

For example, 3 is generator of group 5 (Z5 = {1, 2, 3, 4}).

N 3n 3n mod 5

1 3 3

2 9 4

3 27 2

4 81 1

 Choosing the private key. The private key x is any number bigger than 1 and smaller
than p−1.

 Computing part of the public key. The value y is computed from the parameters p, g
and the private key x as follows −

y = gx mod p

 Obtaining Public key. The ElGamal public key consists of the three parameters (p, g,
y).

For example, suppose that p = 17 and that g = 6 (It can be confirmed that 6 is a generator
of group Z17). The private key x can be any number bigger than 1 and smaller than 71, so
we choose x = 5. The value y is then computed as follows −

y = 65 mod 17 = 7

 Thus the private key is 62 and the public key is (17, 6, 7).

Encryption and Decryption

The generation of an ElGamal key pair is comparatively simpler than the equivalent process for
RSA. But the encryption and decryption are slightly more complex than RSA.

ElGamal Encryption

Suppose sender wishes to send a plaintext to someone whose ElGamal public key is (p, g, y),
then −

 Sender represents the plaintext as a series of numbers modulo p.

 To encrypt the first plaintext P, which is represented as a number modulo p. The
encryption process to obtain the ciphertext C is as follows −

o Randomly generate a number k;

o Compute two values C1 and C2, where −

C1 = gk mod p
C2 = (P*yk) mod p

 Send the ciphertext C, consisting of the two separate values (C1, C2), sent together.

 Referring to our ElGamal key generation example given above, the plaintext P = 13 is
encrypted as follows −

o Randomly generate a number, say k = 10

o Compute the two values C1 and C2, where −

C1 = 610 mod 17
C2 = (13*710) mod 17 = 9

 Send the ciphertext C = (C1, C2) = (15, 9).

ElGamal Decryption

 To decrypt the ciphertext (C1, C2) using private key x, the following two steps are taken
−

o Compute the modular inverse of (C1)x modulo p, which is (C1)-x , generally
referred to as decryption factor.

o Obtain the plaintext by using the following formula −

C2 × (C1)-x mod p = Plaintext

 In our example, to decrypt the ciphertext C = (C1, C2) = (15, 9) using private key x = 5,
the decryption factor is

15-5 mod 17 = 9

 Extract plaintext P = (9 × 9) mod 17 = 13.

ElGamal Analysis

In ElGamal system, each user has a private key x. and has three components of public key
− prime modulus p, generator g, and public Y = gx mod p. The strength of the ElGamal is
based on the difficulty of discrete logarithm problem.

The secure key size is generally > 1024 bits. Today even 2048 bits long key are used. On the
processing speed front, Elgamal is quite slow, it is used mainly for key authentication protocols.
Due to higher processing efficiency, Elliptic Curve variants of ElGamal are becoming
increasingly popular.

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is a term used to describe a suite of cryptographic tools and
protocols whose security is based on special versions of the discrete logarithm problem. It does
not use numbers modulo p.

ECC is based on sets of numbers that are associated with mathematical objects called elliptic
curves. There are rules for adding and computing multiples of these numbers, just as there are
for numbers modulo p.

ECC includes a variants of many cryptographic schemes that were initially designed for
modular numbers such as ElGamal encryption and Digital Signature Algorithm.

It is believed that the discrete logarithm problem is much harder when applied to points on an
elliptic curve. This prompts switching from numbers modulo p to points on an elliptic curve.
Also an equivalent security level can be obtained with shorter keys if we use elliptic curve-
based variants.

The shorter keys result in two benefits −

 Ease of key management

 Efficient computation

These benefits make elliptic-curve-based variants of encryption scheme highly attractive for
application where computing resources are constrained.

RSA and ElGamal Schemes – A Comparison

Let us briefly compare the RSA and ElGamal schemes on the various aspects.

RSA ElGamal

It is more efficient for encryption. It is more efficient for decryption.

It is less efficient for decryption. It is more efficient for decryption.

For a particular security level, lengthy keys
are required in RSA.

For the same level of security, very short keys are
required.

It is widely accepted and used. It is new and not very popular in market.

Digital Signatures

Digital signatures are the public-key primitives of message authentication. In the physical
world, it is common to use handwritten signatures on handwritten or typed messages. They are
used to bind signatory to the message.

Similarly, a digital signature is a technique that binds a person/entity to the digital data. This
binding can be independently verified by receiver as well as any third party.

Digital signature is a cryptographic value that is calculated from the data and a secret key
known only by the signer.

In real world, the receiver of message needs assurance that the message belongs to the sender
and he should not be able to repudiate the origination of that message. This requirement is very
crucial in business applications, since likelihood of a dispute over exchanged data is very high.

Model of Digital Signature

As mentioned earlier, the digital signature scheme is based on public key cryptography. The
model of digital signature scheme is depicted in the following illustration −

The following points explain the entire process in detail −

 Each person adopting this scheme has a public-private key pair.

 Generally, the key pairs used for encryption/decryption and signing/verifying are
different. The private key used for signing is referred to as the signature key and the
public key as the verification key.

 Signer feeds data to the hash function and generates hash of data.

 Hash value and signature key are then fed to the signature algorithm which produces the
digital signature on given hash. Signature is appended to the data and then both are sent
to the verifier.

 Verifier feeds the digital signature and the verification key into the verification
algorithm. The verification algorithm gives some value as output.

 Verifier also runs same hash function on received data to generate hash value.

 For verification, this hash value and output of verification algorithm are compared.
Based on the comparison result, verifier decides whether the digital signature is valid.

 Since digital signature is created by ‘private’ key of signer and no one else can have this
key; the signer cannot repudiate signing the data in future.

It should be noticed that instead of signing data directly by signing algorithm, usually a hash of
data is created. Since the hash of data is a unique representation of data, it is sufficient to sign
the hash in place of data. The most important reason of using hash instead of data directly for
signing is efficiency of the scheme.

Let us assume RSA is used as the signing algorithm. As discussed in public key encryption
chapter, the encryption/signing process using RSA involves modular exponentiation.

Signing large data through modular exponentiation is computationally expensive and time
consuming. The hash of the data is a relatively small digest of the data, hence signing a hash is
more efficient than signing the entire data.

Importance of Digital Signature

Out of all cryptographic primitives, the digital signature using public key cryptography is
considered as very important and useful tool to achieve information security.

Apart from ability to provide non-repudiation of message, the digital signature also provides
message authentication and data integrity. Let us briefly see how this is achieved by the digital
signature −

 Message authentication − When the verifier validates the digital signature using public
key of a sender, he is assured that signature has been created only by sender who possess
the corresponding secret private key and no one else.

 Data Integrity − In case an attacker has access to the data and modifies it, the digital
signature verification at receiver end fails. The hash of modified data and the output
provided by the verification algorithm will not match. Hence, receiver can safely deny
the message assuming that data integrity has been breached.

 Non-repudiation − Since it is assumed that only the signer has the knowledge of the
signature key, he can only create unique signature on a given data. Thus the receiver can
present data and the digital signature to a third party as evidence if any dispute arises in
the future.

By adding public-key encryption to digital signature scheme, we can create a cryptosystem that
can provide the four essential elements of security namely − Privacy, Authentication, Integrity,
and Non-repudiation.

Encryption with Digital Signature

In many digital communications, it is desirable to exchange an encrypted messages than
plaintext to achieve confidentiality. In public key encryption scheme, a public (encryption) key

of sender is available in open domain, and hence anyone can spoof his identity and send any
encrypted message to the receiver.

This makes it essential for users employing PKC for encryption to seek digital signatures along
with encrypted data to be assured of message authentication and non-repudiation.

This can archive by combining digital signatures with encryption scheme. Let us briefly discuss
how to achieve this requirement. There are two possibilities, sign-then-encrypt and encrypt-
then-sign.

However, the crypto system based on sign-then-encrypt can be exploited by receiver to spoof
identity of sender and sent that data to third party. Hence, this method is not preferred. The
process of encrypt-then-sign is more reliable and widely adopted. This is depicted in the
following illustration −

The receiver after receiving the encrypted data and signature on it, first verifies the signature
using sender’s public key. After ensuring the validity of the signature, he then retrieves the data
through decryption using his private key.

Key Management and Distribution

Key management refers to the distribution of cryptographic keys; the mechanisms used to bind
an identity to a key; and the generation, maintenance, and revoking of such keys.

The notation that we will use is

X → Y: { Z } k

means that entity X sends to entity Y a message Z encrypted with the key k

e.g.

Alice → Bob: { “Hello World” } k

means that Alice send Bob the message “Hello World” using key k. k represents the secret key
for the classical (symmetrical) key encryption system. e and d represent the public and private
key, respectively, for a public key (asymmetrical) encryption system.

Session and Interchange Keys

Def: An interchange key is a cryptographic key associated with a principal to a communication.

Def: A session key is a cryptographic key associated with the communications itself

talk about way to communicate

different key for each communications

A session key prevents forward searches

Forward Search Attack

small number of plain text messages

encrypt with a public key

compare to sent messages

know plain text message

e.g.

Suppose that Alice is a client of Bob’s stock brokerage firm. Alice need to send Bob one of two
messages: BUY or SELL. Cathy, the attacker, enciphers both messages with Bob’s public key.
When Alice sends her message, Cathy compares it with her enciphered messages and sees which
one it matches.

Randomly generated session key that are used once prevents this type of attack.

An interchange key

used to convince receiver who the sender is

used for all sessions

changes independently of session initiation and termination

Key Exchange

e.g.

Alice and Bob want to communicate securely

The goal is for Alice and Bob to communicate secretly.

1. Key cannot be transmitted in the clear

2. Bob and Alice may decide to trust a third party

3. The cryptosystems and protocols are known. Only the keys are secret.

Classical Cryptographic Key Exchange & Authentication

Trusted third party

1. Alice → Cathy: { request for session key to Bob} KAlice

2. Cathy → Alice: { KSession }KAlice || { KSession } KBob

3. Alice → Bob: { KSession } KBob

Alice wants to talk to Bob

Alice & Cathy share a secret key

Bob & Cathy share a secret key

Goal: Alice and Bob share a secret key

Public Key Cryptographic Key Exchange and Authentication

Again, Alice wants to secretly communicate with Bob

Alice → Bob: { KSession } BobPubK

Bob decodes and away they go BUT ……

How does Bob know that the KSession came from Alice?

Alice → Bob: { { KSession } PrAlice iK } BobPubK
Suppose that Eve is listing to Alice

Alice → Peter: { “send me Bob’s public key” } - Eve hears

Alice Bob

Eve → Peter: { “send me Bob’s public key” }

Peter → Eve: { BobPub
Key

 }

Eve → Alice: { EvePub
Key

 }

Alice → Bob: { KSession } EvePub
Key

 - This is intercepted by Eve

Eve → Bob: { KSession } BobPubK

This is an example of a man-in-the-middle attack

Key distribution

Key distribution is the function that delivers a key to two parties who wish to exchange secure
encrypted data. Some sort of mechanism or protocol is needed to provide for the secure
distribution of keys.

o Symmetric Key Distribution Using Symmetric Encryption

· A Key Distribution Scenario ierarchical Key Control Session
Key Lifetime

· A Transparent Key Control Scheme Decentralized Key Control
Controlling Key Usage

o Symmetric Key Distribution Using Asymmetric Encryption

· Simple Secret Key Distribution
· Secret Key Distribution with Confidentiality and Authentication

A Hybrid Scheme

o Distribution Of Public Keys

· Public Announcement of Public Keys Publicly Available
Directory

· Public-Key Authority Public-Key Certificates

o X.509 Certificates

· Certificates
· X.509 Version 3

o Public-Key Infrastructure

· PKIX Management Functions PKIX Management Protocols

 KEY POINTS

◆ Key distribution is the function that delivers a key to two parties who wish to exchange
secure encrypted data. Some sort of mechanism or protocol is needed to provide for the secure
distribution of keys.

◆ Key distribution often involves the use of master keys, which are infrequently used and are
long lasting, and session keys, which are generated and distributed for temporary use between
two parties.

◆ Public-key encryption schemes are secure only if the authenticity of the public key is
assured. A public-key certificate scheme provides the necessary security.

◆ X.509 defines the format for public-key certificates. This format is widely used in a variety
of applications.

◆ A public-key infrastructure (PKI) is defined as the set of hardware, software, people,
policies, and procedures needed to create, manage, store, distribute, and revoke digital
certificates based on asymmetric cryptography.

◆ Typically, PKI implementations make use of X.509 certificates.

UNIT - III

KERBEROS
Kerberos is an authentication service developed as part of Project Athena at MIT. The problem
that Kerberos addresses is this: Assume an open distributed environment in which users at
workstations wish to access services on servers distributed throughout the network. We would
like for servers to be able to restrict access to
authorized users and to be able to authenticate requests for service. In this environment, a workst
ation cannot be trusted to identify its users correctly to network services.In particular, the followi
ng three threats exist:

1. A user may gain access to a particular workstation and pretend to be another user operating
from that workstation.

2. A user may alter the network address of a workstation so that the requests
sent from the altered workstation appear to come from the impersonated workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a server or
to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services and data that
he or she is not authorized to access. Rather than building in elabo- rate authentication
protocols at each server, Kerberos provides a centralized authentication
server whose function is to authenticate users to servers and servers to users. Unlike most
other authentication schemes described in this book,
Kerberos relies exclusively on symmetric encryption, making no use of public-key encryption.

Two versions of Kerberos are in common use. Version 4 [MILL88, STEI88] implementations
still exist. Version 5 [KOHL94] corrects some of the security deficiencies of version 4 and
has been issued as a proposed Internet Standard (RFC 4120).

If a set of users is provided with dedicated personal computers that have no network
connections, then a user’s resources and files can be protected by physically securing
each personal computer. When these users instead are served by a centralized time sharing
system, the time-sharing operating system must provide the security. The
operating system can enforce access control policies based on user identity and usethe logon
 procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed architecture consisting
of
dedicated user workstations (clients) and distributed or centralized servers. In this environment,
three approaches to security can be envisioned.

1. Rely on each individual client workstation to assure the identity of its user or
users and rely on each server to enforce a security policy based on user identi- fication (ID).

2. Require that client systems authenticate themselves to servers, but trust the client system
 concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also
require that servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated bya single
organization, the first or perhaps the second strategy may suffice. But in a more open
environment in which network connections to other machines are supported, the third approach
is needed to protect user information and resources housed at the server. Kerberos supports this
third approach. Kerberos assumes a distributed client/server architecture and employs one or
more Kerberos servers to provide an authentication service.

The first published report on Kerberos [STEI88] listed the following requirements.

• Secure: A network eavesdropper should not be able to obtain the necessary
information to impersonate a user. More generally, Kerberos should be strong enough that a
 potential opponent does not find it to be the weak link.

• Reliable: For all services that rely on Kerberos for access control,
lack of availability of the Kerberos service means lack of availability of the supported services.
Hence, Kerberos should be highly reliable and should employ a
distributed server architecture with one system able to back up another.

• Transparent: Ideally, the user should not be aware that authentication is taking place
beyond the requirement to enter a password.

• Scalable: The system should be capable of supporting large numbers of clients
and servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a trusted third-party
authentication service that uses a protocol based on that
proposed by Needham and Schroeder [NEED78].

It is trusted in the sense that clients and servers trust Kerberos to mediate their mutual
authentication. Assuming the Kerberos protocol is well designed, then the authentication service
is secure if the Kerberos server itself is secure.

Example:

Ticket

is an unforgeable, non-replayable, authenticated object

names the user & service user allowed to use

Flow of Information

1. user identifies self to Kerberos Server.

2. Kerberos Server verifies the user is authorized.

3. Kerberos Server sends a Session Key SG for use in communications with the TG server and a
Ticket TG for the TG server encrypted with the user’s password.

4. Kerberos Server sends a copy of the Session Key SG to the TG server, the identity of the user
encrypted with a Key shared by the Kerberos server and the TG server.

Note:

User’s password stored at Kerberos Server and not passed over the networks.

Ticket contains

User’s authenticated identity

identification of requested service

rights w.r.t. services

Session Key

expiration date of ticket

1. Authentication

2. Ticket Authorization – Authorization Key

3. Server Access Request

4. Service Ticket

5. Unique Keys between TG Server and Service

6. Service Request

Characteristics

1. No passwords communicated on the network

initial password passed by snail mail

2. Cryptographic protection against spoofing

3. Limited period of validity

4. Timestamps to prevent replay attacks

5. Mutual authentication

Issues

1. continuous availability of a trusted TG server.

2. Authenticity of servers requires a trusted relationship between that TG server and every server.

3. Requires timely transactions

4. Subverted workstation can save and later replay user passwords.

5. Password guessing works

intercept ticket

6. Does not scale well.

7. Complete solution

all applications must use Kerberos

authentication

X.509 CERTIFICATES
ITU-T recommendation X.509 is part of the X.500 series of recommendations that define a
directory service. The directory is, in effect, a server or distributed set of servers that
maintains a database of information about users. The information includes a mapping from user
name to network address, as well as other attributes and information about the users.

X.509 defines a framework for the provision of authentication services by the X.500 directory to
its users. The directory may serve as a repository of public-key
certificates of the type discussed in Section 14.3. Each certificate contains the public
key of a user and is signed with the private key of a trusted certification authority. In addition,
X.509 defines alternative authentication protocols based on the use of public-key certificates.

X.509 is an important standard because the certificate structure and authentication protocols
defined in X.509 are used in a variety of contexts. For example, the X.509 certificate format is
 used in S/MIME , IP Security , and SSL/TLS .

X.509 was initially issued in 1988. The standard was subsequently revised to address some of the
security concerns documented in [IANS90] and [MITC90]; a revised recommendation was
issued in 1993. A third version was issued in 1995 and revised in 2000.

X.509 is based on the use of public key cryptography and digital signatures. The standard does not
 dictate the use of a specific algorithm but recommends RSA.The digital signature scheme is assum
ed
to require the use of a hash function. Again, the standard does not dictate a specific hash algorithm.
The 1988 recommendation included the description of a recommended hash algorithm; this
 algorithm has since been shown to be insecure and was dropped from the 1993 recommendation.
Figure 14.13 illustrates the generation of a public-key certificate.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user. These user
certificates are assumed to be created by some trusted certification authority (CA) and placed in
the directory by the CA or by the user. The directory server itself is not responsible for the
creation of public keys or for the certification function; it merely provides an easily accessible
location for users to obtain certificates.

Figure 14.14a shows the general format of a certificate, which includes the fol- lowing elements.

• Version: Differentiates among successive versions of the certificate format; the
default is version 1. If the issuer unique identifier or subject unique identifier are present, the
value must be version 2. If one or more extensions are present, the version must be version 3.

• Serial number: An integer value unique within the issuing CA that is
 unam biguously associated with this certificate.

• Signature algorithm identifier: The algorithm used to sign the certificate togethe
r with any associated parameters. Because this information is repeated in the signature field at
 the end of the certificate, this field has little, if any, utility.

• Issuer name: X.500 is the name of the CA that created and signed this certificate.

• Period of validity: Consists of two dates: the first and last on which the certificate
is valid.

• Subject name: The name of the user to whom this certificate refers. That is, this
certificate certifies the public key of the subject who holds the corresponding private key.

• Subject’s public
key information: The public key of the subject, plus an identifier of
the algorithm for which this key is to be used, together with any associated parameters.

• Issuer unique identifier: An optional-bit string field used to identify uniquely
the issuing CA in the event the X.500 name has been reused for different entities.

 • Subject unique identifier: An optional-bit string field used to identify uniquely
the subject in the event the X.500 name has been reused for different entities.

• Extensions: A set of one or more extension fields. Extensions were added in
version 3 and are discussed later in this section.

• Signature: Covers all of the other fields of the certificate; it contains the hash
code of the other fields encrypted with the CA’s private key. This field includes the signature
algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible reuse of subject and/or
issuer names over time. These fields are rarely used.

The standard uses the following notation to define a certificate:

CA << A >> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}

where

Y<< X>> = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted hash code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

TA = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public
key is known to a user, then that user can verify that a certificate signed by the CA is valid.

OBTAINING A USER’S CERTIFICATE User certificates generated by a CA have the
following characteristics:

• Any user with access to the public key of the CA can verify the user public key
that was certified.

• No party other than the certification authority can modify the certificate with-
out this being detected.

Because certificates are unforgeable, they can be placed in a directory without the need for the
directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA.
All user certificates can be placed in the directory for access by all users. In addition, a user can
 transmit his or her certificate directly to other users. In either case, once
B is in possession of A’s
certificate, B has confidence that messages it encrypts with A’s public key will be secure from
eavesdropping and that messages signed with A’s private key are unforgeable.

If there is a large community of users, it may not be practical for all users to subscribe to the
same CA. Because it is the CA that signs certificates, each par- ticipating user must have a copy
of the CA’s own public key to verify signatures. This public key must be provided to each user
in an absolutely secure (with respect to integrity and authenticity) way so that the user has
confidence in the associated certificates. Thus, with many users, it may be more practical for
there to be a number of CAs, each of which securely provides its public key to some fraction of
the users.

Now suppose that A has obtained a certificate from certification authority X1 and B has obtained
a certificate from CA X2. If A does not securely know the public key of X2, then B’s certificate,
issued by X2, is useless to A. A can read B’s certificate, but A cannot verify the signature.
 However, if the two CAs have securely exchanged their own public keys, the following
procedure will enable A to obtain B’s public key.

Step 1 A obtains from the directory the certificate of X2 signed by X1. Because A
securely knows X1’s public key, A can obtain X2’s public key from its certificate and verify it b
y means of X1’s signature on the certificate.

Step 2 A then goes back to the directory and obtains the certificate of B signed by
X2. Because A now has a trusted copy of X2’s public key, A can verify the
signature and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of X.509, this chain is
expressed as

X1 << X2 >> X2 << B >>

In the same fashion, B can obtain A’s public key with the reverse chain:

X2 << X1 >> X1 << A >>

This scheme need not be limited to a chain of two certificates. An arbitrarily long path of CAs
can be followed to produce a chain. A chain with N elements would be expressed as

X1 << X2 >> X2 << X3 >> Á XN << B >>

In this case, each pair of CAs in the chain (Xi, Xi+1) must have created certificates for
each other.

All these certificates of CAs by CAs need to appear in the directory, and the user needs to know
how they are linked to follow a path to another user’s public-
key certificate. X.509 suggests that CAs be arranged in a hierarchy so that navigation is straight
forward.

Figure 14.15, taken from X.509, is an example of such a hierarchy. The con- nected circles
indicate the hierarchical relationship among the CAs; the associated
boxes indicate certificates maintained in the directory for each CA entry. The directory entry for
each CA includes two types of certificates:

• Forward certificates: Certificates of X generated by other CAs

• Reverse certificates: Certificates generated by X that are the certificates of
other CAs

In this example, user A can acquire the following certificates from the
 directory to establish a certification path to B:

X << W >> W << V W << << Y >> Y << Z >> Z << B >>

When A has obtained these certificates, it can unwrap the certification path in sequence to
recover a trusted copy of B’s public key. Using this public key, A can
send encrypted messages to B. If A wishes to receive encrypted messages back from B, or to sign
messages sent to B, then B will require A’s public key, which can be
obtained from the following certification path:

Z << Y >> Y << V >> << W >> W << X >> X << A >>

B can obtain this set of certificates from the directory, or A can provide them as part of its initial
 message to B.

REVOCATION OF CERTIFICATES

Recall from Figure 14.14 that
each certificate includes a period of validity, much like a credit card. Typically, a new certifica
te is issued just before the expiration of the old one. In addition, it may be desirable
on occasion to revoke a certificate before it expires, for one of the following reasons.

1. The user’s private key is assumed to be compromised.

2. The user is no longer certified by this CA. Reasons for this include that the subject’s name h
as changed, the certificate is superseded, or the certificate was not
issued in conformance with the CA’s policies.

3. The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired certificates
issued by that CA, including both those issued to users and to other CAs.
These lists should also be posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the
issuer and includes (Figure 14.14b) the issuer’s name, the date the list was created,
the date the next CRL is scheduled to be issued, and an entry for each revoked cer-
tificate. Each entry consists of the serial number of a certificate and revocation date
for that certificate. Because serial numbers are unique within a CA, the serial num-
ber is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine whether the certificate
has been revoked. The user could check the directory each
time a certificate is received. To avoid the delays (and possible costs) associated with directory
searches, it is likely that the user would maintain a local cache of certifi-
cates and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information
that recent design and implementation experience has shown to be needed. [FORD95] lists the
following requirements not satisfied by version 2.

1. The subject field is inadequate to convey the identity of a key owner to a
public-key user. X.509 names may be relatively short and lacking in obvious identification
details that may be needed by the user.

2. The subject field is also inadequate for many applications, which typically recogni
ze entities by an Internet e-mail address, a URL, or some other Internet-related identification.

3. There is a need to indicate security policy information. This enables a security
application or function, such as IPSec, to relate an X.509 certificate to a given policy.

4. There is a need to limit the damage that can result from a faulty or malicious CA
by setting constraints on the applicability of a particular certificate.

5. It is important to be able to identify different keys used by the same owner at
different times. This feature supports key lifecycle management: in particular, the ability to
update key pairs for users and CAs on a regular basis or under exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers felt that a more flexible
approach was needed. Thus, version 3 includes a number
of optional extensions that may be added to the version 2 format. Each extension consists of an ext
ension identifier, a criticality indicator, and an extension value. The criticality indicator indicates
whether an extension can be safely ignored. If the indicator has

a value of TRUE and an implementation does not recognize the extension, it must treat the certific
ate as invalid.

The certificate extensions fall into three main categories: key and policy information, subject and
 issuer attributes, and certification path constraints.

KEY AND POLICY INFORMATION These extensions convey additional information about
the subject and issuer keys, plus indicators of certificate policy. A certificate policy is a named
set of rules that indicates the applicability of a certificate to a particular community and/or
class of application with common security requirements. For example, a policy might be
applicable to the authentication of electronic data interchange (EDI) transactions for the trading
of goods within a given price range.

This area includes:

• Authority key identifier: Identifies the public key to
be used to verify the signature on this certificate or CRL. Enables distinct keys of the same
 CA to be differentiated. One use of this field is to handle CA key pair updating.

• Subject key identifier: Identifies the public key being certified. Useful for subj
ect key pair updating. Also, a subject may have multiple key pairs and, correspondingly, differen
t certificates for different purposes (e.g., digital signature and encryption key agreement).

• Key usage: Indicates a restriction imposed as to the purposes for which, and the
policies under which, the certified public key may be used. May indicate one or more of the
following: digital signature, nonrepudiation, key
encryption, data encryption, key agreement, CA signature verification on certificates,
CA signature verification on CRLs.

• Private-key usage period: Indicates the period of use of the private key corre-
sponding to the public key. Typically, the private key is used over a different
period from the validity of the public key. For example, with digital signature keys, the usage per
iod for the signing private key is typically shorter than that for the verifying public key.

• Certificate policies: Certificates may be used in environments where multiple
policies apply. This extension lists policies that the certificate is recognized as
supporting, together with optional qualifier information.

• Policy mappings: Used only in certificates for CAs issued by
other CAs. Policy mappings allow an issuing CA to indicate that one or more of that issuer’s
policies can be considered equivalent to another policy used in the subject CA’s domain.

CERTIFICATE SUBJECT AND ISSUER ATTRIBUTES These extensions support alternative
names, in alternative formats, for a certificate subject or certificate issuer and can convey
additional information about the certificate subject to increase a certificate user’s confidence that
the certificate subject is a particular person or entity. For example, information
such as postal address, position within a corporation, or picture image may be required.

The extension fields in this area include:

• Subject alternative name: Contains one or more alternative names, using any
of a variety of forms. This field is important for supporting certain applications, such as
electronic mail, EDI, and IPSec, which may employ their own name forms.

• Issuer alternative name: Contains one or more alternative names, using any of
a variety of forms.

• Subject directory attributes: Conveys any desired X.500 directory attribute
values for the subject of this certificate.

CERTIFICATION PATH CONSTRAINTS These extensions allow constraint specifications to
be included in certificates issued for CAs by other CAs. The constraints may restrict the types
of certificates that can be issued by the subject CA or that may
occur subsequently in a certification chain.

The extension fields in this area include:

• Basic constraints: Indicates if the subject may act as a CA. If so, a certification
path length constraint may be specified.

• Name constraints: Indicates a name space within which all subject names in
subsequent certificates in a certification path must be located.

• Policy constraints: Specifies constraints that may require explicit certificate
policy identification or inhibit policy mapping for the remainder of the certifi- cation path.

PUBLIC-KEY INFRASTRUCTURE
RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as the set of
hardware, software, people, policies, and procedures needed to create,
manage, store, distribute, and revoke digital certificates based on asymmetric cryptography.
The principal objective for developing a PKI is to enable secure,
convenient, and efficient acquisition of public keys. The Internet Engineering Task Force (IETF)
Public Key Infrastructure X.509 (PKIX) working group has been the dri- ving force behind
setting up a formal (and generic) model based on X.509 that is suitable for deploying a
certificate-based architecture on the Internet. This section describes the PKIX model.

Figure 14.16 shows the interrelationship among the key elements of the PKIX model. These
 elements are

• End entity: A generic term used to denote end users, devices (e.g., servers,
routers), or any other entity that can be identified in the subject field of a pub- lic key
certificate. End entities typically consume and/or support PKI-related services.

• Certification authority (CA): The issuer of certificates and (usually) certificat
e revocation lists (CRLs). It may also support a variety of administrative functions, although
these are often delegated to one or more Registration Authorities.

 • Registration authority (RA): An optional component that can assume a numbe
r of administrative functions from the CA. The RA is often associated with the end entity registrati
on process but can assist in a number of other areas as well.

• CRL issuer: An optional component that a CA can delegate to publish CRLs.

• Repository: A generic term used to denote any method for storing certificates
and CRLs so that they can be retrieved by end entities.

PKIX Management Functions

PKIX identifies a number of management functions that potentially need to be sup- ported by
management protocols. These are indicated in Figure 14.16 and include the following:

• Registration: This is the process whereby a user first makes itself known to a
CA (directly or through an RA), prior to that CA issuing a certificate or cer- tificates for that
user. Registration begins the process of enrolling in a PKI. Registration usually involves some
offline or online procedure for mutual authentication. Typically, the end entity is issued one or
more shared secret keys used for subsequent authentication.

Initialization: Before a client system can operate securely, it is necessary to install key materials
that have the appropriate relationship with keys stored elsewhere in the infrastructure. For
example, the client needs to be securely initialized with the public key and other assured
information of the trusted CA(s), to be used in validating certificate paths.

• Certification: This is the process in which a CA issues a certificate for a user’s
public key, returns that certificate to the user’s client system, and/or posts that
certificate in a repository.

• Key pair recovery: Key pairs can be used to support digital signature creation
and verification, encryption and decryption, or both. When a key pair is used for
encryption/decryption, it is important to provide a mechanism to recover the nec- essary decryption
keys when normal access to the keying material is
no longer possible, otherwise it will not be possible to recover the encrypted data. Loss of
access to the decryption key can result from forgotten passwords/PINs, corrupted
disk drives, damage to hardware tokens, and so on. Key pair recovery allows end entities to restore
their encryption/decryption key pair from an authorized key
backup facility (typically, the CA that issued the end entity’s certificate).

• Key pair update: All key pairs need to be updated regularly (i.e., replaced with
a new key pair) and new certificates issued. Update is required when the certificate lifetime expir
eand as a result of certificate revocation.

• Revocation request: An authorized person advises a CA of an abnormal situati
on requiring certificate revocation. Reasons for revocation include private-
key compromise, change in affiliation, and name change.

• Cross certification: Two CAs exchange information used in establishing a
cross-certificate. A cross-certificate is a certificate issued by one CA to another CA that contains
a CA signature key used for issuing certificates.

PKIX Management Protocols

The PKIX working group has defines two alternative
management protocols between PKIX entities that support the management functions listed in th
e preced- ing subsection. RFC 2510 defines the certificate management
protocols (CMP). Within CMP, each of the management functions is explicitly identified by spec
ific protocol exchanges. CMP is designed to be a flexible protocol able to accommodate
a variety of technical, operational, and business models.

RFC 2797 defines certificate management messages over CMS (CMC), where
CMS refers to RFC
2630, cryptographic message syntax. CMC is built on earlier work and is intended to leverage
existing implementations. Although all of the PKIX functions are supported, the functions do not a
ll map into specific protocol exchanges.

ELECTRONIC MAIL SECURITY

1 PRETTY GOOD PRIVACY (PGP)

PGP provides the confidentiality and authentication service that can be used for electronic
mail and file storage applications. The steps involved in PGP are:

 Select the best available cryptographic algorithms as building blocks.

 Integrate these algorithms into a general purpose application that is independent of operating
system and processor and that is based on a small set of easy-to-use commands.

 Make the package and its documentation, including the source code, freely available via the
internet, bulletin boards and commercial networks.

 Enter into an agreement with a company to provide a fully compatible, low cost commercial
version of PGP.

PGP has grown explosively and is now widely used. A number of reasons can be cited for
this growth.

 It is available free worldwide in versions that run on a variety of platform.

 It is based on algorithms that have survived extensive public review and are considered extremely
secure.

 e.g., RSA, DSS and Diffie Hellman for public key encryption CAST-128, IDEA and 3DES for
conventional encryption SHA-1 for hash coding.

 It has a wide range of applicability.

 It was not developed by, nor it is controlled by, any governmental or standards organization.

Operational description

 The actual operation of PGP consists of five services: authentication, confidentiality,
compression, e-mail compatibility and segmentation.

1. Authentication

The sequence for authentication is as follows:

§ The sender creates the message

§ SHA-1 is used to generate a 160-bit hash code of the message

§ The hash code is encrypted with RSA using the sender s private key and‟s private key and

the result is prepended to the message

§ The receiver uses RSA with the sender s public key to decrypt and recover‟s private key and
the hash code.

 The receiver generates a new hash code for the message and

compares it with the decrypted hash code. If the two match, the
message is accepted as authentic.

2. Confidentiality
Confidentiality is provided by encrypting messages to be transmitted or to be stored locally as
files. In both cases, the conventional encryption algorithm CAST-128 may be used. The 64-bit
cipher feedback (CFB) mode is used.

In PGP, each conventional key is used only once. That is, a new key is generated as a random
128-bit number for each message. Thus although this is referred to as a session key, it is in
reality a one time key. To protect the key, it is encrypted with the receiver s public key.‟s private key and

The sequence for confidentiality is as follows:

 The sender generates a message and a random 128-bit number to be used as a session key for this
message only.

 The message is encrypted using CAST-128 with the session key.

 The session key is encrypted with RSA, using the receiver s public key and is prepended to the‟s private key and
message.

 The receiver uses RSA with its private key to decrypt and recover the session key.

 The session key is used to decrypt the message.

 Confidentiality and authentication

Here both services may be used for the same message. First, a signature is generated for the
plaintext message and prepended to the message. Then the plaintext plus the signature is
encrypted using CAST-128 and the session key is encrypted using RSA.

3. Compression

As a default, PGP compresses the message after applying the signature but before
encryption. This has the benefit of saving space for both e-mail transmission and for file
storage.

The signature is generated before compression for two reasons:

 It is preferable to sign an uncompressed message so that one can store only the uncompressed
message together with the signature for future verification. If one signed a compressed
document, then it would be necessary either to store a compressed version of the message for
later verification or to recompress the message when verification is required.

 Even if one were willing to generate dynamically a recompressed message fro verification, PGP s‟s private key and

compression algorithm presents a difficulty. The algorithm is not deterministic; various
implementations of the algorithm achieve different tradeoffs in running speed versus
compression ratio and as a result, produce different compression forms.

Message encryption is applied after compression to strengthen cryptographic security. Because
the compressed message has less redundancy than the original plaintext, cryptanalysis is more
difficult. The compression algorithm used is ZIP.

4. e-mail compatibility

Many electronic mail systems only permit the use of blocks consisting of ASCII texts. To
accommodate this restriction, PGP provides the service of

converting the raw 8-bit binary stream to a stream of printable ASCII characters. The scheme
used for this purpose is radix-64 conversion. Each group of three octets of binary data is
mapped into four ASCII characters.

e.g., consider the 24-bit (3 octets) raw text sequence 00100011 01011100 10010001, we can
express this input in block of 6-bits to produce 4 ASCII characters.

5. Segmentation and reassembly

E-mail facilities often are restricted to a maximum length. E.g., many of the facilities
accessible through the internet impose a maximum length of 50,000 octets. Any message
longer than that must be broken up into smaller segments, each of which is mailed
separately.

To accommodate this restriction, PGP automatically subdivides a message that is too
large into segments that are small enough to send via e-mail. The segmentation is done
after all the other processing, including the radix-64 conversion. At the receiving end,
PGP must strip off all e-mail headers and reassemble the entire original block before
performing the other steps.

2. PGP Operation Summary:

Cryptographic keys and key rings

Three separate requirements can be identified with respect to these keys:

A means of generating unpredictable session keys is needed.

It must allow a user to have multiple public key/private key pairs.

Each PGP entity must maintain a file of its own public/private key pairs as well as a file
of public keys of correspondents.

We now examine each of the requirements in turn.

1. Session key generation

Each session key is associated with a single message and is used only for the purpose of
encryption and decryption of that message. Random 128-bit numbers are generated using
CAST-128 itself. The input to the random number generator consists of a 128-bit key and
two 64-bit blocks that are treated as plaintext to be encrypted. Using cipher feedback
mode, the CAST-128 produces two 64-bit cipher text blocks, which are concatenated to

form the 128-bit session key. The plaintext input to CAST-128 is itself derived from a
stream of 128-bit randomized numbers. These numbers are based on the keystroke input
from the user.

2. Key identifiers

If multiple public/private key pair are used, then how does the recipient know which of
the public keys was used to encrypt the session key? One simple solution would be to
transmit the public key with the message but, it is unnecessary wasteful of space. Another
solution would be to associate an identifier with each public key that is unique at least
within each user.

The solution adopted by PGP is to assign a key ID to each public key that is, with very
high probability, unique within a user ID. The key ID associated with each public key
consists of its least significant 64 bits. i.e., the key ID of public key KUa is

(KUa mod 264).

message consists of three components.

Message component – includes actual data to be transmitted, as well as the filename and
a timestamp that specifies the time of creation.

Signature component – includes the following

 Timestamp – time at which the signature was made.
 Message digest – hash code.

 Two octets of message digest – to enable the recipient to determine if the correct public key was

used to decrypt the message.

 Key ID of sender s public key –‟s private key and identifies the public key

Session key component – includes session key and the identifier of the recipient public key.

3. Key rings

PGP provides a pair of data structures at each node, one to store the public/private key
pair owned by that node and one to store the public keys of the other users known at that
node. These data structures are referred to as private key ring and public key ring.

3. The general structures of the private and public key rings are shown below:

Timestamp – the date/time when this entry was made.

Key ID – the least significant bits of the public key.

Public key – public key portion of the pair.

Private key – private key portion of the pair.

User ID – the owner of the key.

Key legitimacy field – indicates the extent to which PGP will trust that this is a valid public key
for this user.

Fig.4.5.3.1 General Structure of Private and Public Rings

Signature trust field – indicates the degree to which this PGP user trusts the signer to certify

public key.

Owner trust field – indicates the degree to which this public key is trusted to sign other public
key certificates.

PGP message generation

First consider message transmission and assume that the message is to be both signed and
encrypted. The sending PGP entity performs the following steps:

1. Signing the message

 PGP retrieves the sender s private key from the private key ring using user ID as an‟s private key and
index.

 If user ID was not provided, the first private key from the ring is retrieved.

 PGP prompts the user for the passpharse (password) to recover the unencrypted

private key.

 The signature component of the message is constructed.

2. Encrypting the message

 PGP generates a session key and encrypts the message.

 PGP retrieves the recipient s public key from the public key ring using user ID as‟s private key and
index.

 The session key component of the message is constructed.

The receiving PGP entity performs the following steps

1. Decrypting the message

 PGP retrieves the receiver s private key from the private key ring, using the key ID‟s private key and
field in the session key component of the message as an index.

 PGP prompts the user for the passpharse (password) to recover the unencrypted

private key.

 PGP then recovers the session key and decrypts the message.

2. Authenticating the message

 PGP retrieves the sender s public key from the public key ring, using the key ID‟s private key and
field in the signature key component of the message as an index.

 PGP recovers the transmitted message digest.

 PGP computes the message digest for the received message and compares it to the transmitted

message digest to authenticate.

S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extension) is a security enhancement to the MIME
Internet e-mail format standard, based on technology from RSA Data Security. S/MIME is
defined in a number of documents, most importantly RFCs 3369, 3370, 3850 and 3851.

1. Multipurpose Internet Mail Extensions

MIME is an extension to the RFC 822 framework that is intended to address some of the
problems and limitations of the use of SMTP (Simple Mail Transfer Protocol) or some other mail
transfer protocol and RFC 822 for electronic mail. Following are the limitations of SMTP/822
scheme:

1. SMTP cannot transmit executable files or other binary objects.

2. SMTP cannot transmit text data that includes national language characters because these are
represented by 8-bit codes with values of 128 decimal or higher, and SMTP is limited to 7-bit
ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not use a
consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual data included in
X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP standards defined in RFC
821. Common problems include:

 Deletion, addition, or reordering of carriage return and linefeed

 Truncating or wrapping lines longer than 76 characters

 Removal of trailing white space (tab and space characters)

 Padding of lines in a message to the same length

 Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible with existing RFC
822 implementations. The specification is provided in RFCs 2045 through 2049.

2. Overview

The MIME specification includes the following elements:

1. Five new message header fields are defined, which may be included in an RFC 822

header. These fields provide information about the body of the message.

2. A number of content formats are defined, thus standardizing representations that
support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content format into a form
that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two subsections deal
with content formats and transfer encodings.

3. The five header fields defined in MIME are as follows:

 MIME-Version: Must have the parameter value 1.0. This field indicates that the
message conforms to RFCs 2045 and 2046.

 Content-Type: Describes the data contained in the body with sufficient detail

 Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent
the body of the message in a way that is acceptable for mail transport.

 Content-ID: Used to identify MIME entities uniquely in multiple contexts.

 Content-Description: A text description of the object with the body; this is useful when the object
is not readable (e.g., audio data).

4. MIME Content Types

The bulk of the MIME specification is concerned with the definition of a variety of content
types. This reflects the need to provide standardized ways of dealing with a wide variety of
information representations in a multimedia environment.

Below lists the content types specified in RFC 2046. There are seven different major types of
content and a total of 15 subtypes

For the text type of body, no special software is required to get the full meaning of the text, aside
from support of the indicated character set. The primary subtype is plain text, which is simply a
string of ASCII characters or ISO 8859 characters. The enriched subtype allows greater
formatting flexibility. The multipart type indicates that the body contains multiple, independent
parts. The Content-Type header field includes a parameter, called boundary, that defines the
delimiter between body parts.

The multipart/digest subtype is used when each of the body parts is interpreted as an RFC 822
message with headers. This subtype enables the construction of a message whose parts are
individual messages. For example, the moderator of a group might collect e-mail messages from
participants, bundle these messages, and send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including header
and body. Despite the name of this subtype, the encapsulated message may be not only a
simple RFC 822 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a number of
parts, which must be reassembled at the destination. For this subtype, three parameters
are specified in the Content-Type: Message/Partial field: an id common to all fragments
of the same message, a sequence number unique to each fragment, and the total number
of fragments.

The message/external-body subtype indicates that the actual data to be conveyed in this
message are not contained in the body. Instead, the body contains the information needed
to access the data. As with the other message types, the message/external-body subtype
has an outer header and an encapsulated message with its own header. The only
necessary field in the outer header is the Content-Type field, which identifies this as a
message/external-body subtype. The inner header is the message header for the
encapsulated message. The Content-Type field in the outer header must include an
access-type parameter, which indicates the method of access, such as FTP (file transfer
protocol).

The application type refers to other kinds of data, typically either uninterpreted binary
data or information to be processed by a mail-based application.

5. MIME Transfer Encodings

The other major component of the MIME specification, in addition to content type
specification, is a definition of transfer encodings for message bodies. The objective is to
provide reliable delivery across the largest range of environments.

The MIME standard defines two methods of encoding data. The Content-Transfer-Encoding
field can actually take on six values. For SMTP transfer, it is safe to use the 7bit form. The 8bit
and binary forms may be usable in other mai transport contexts. Another Content-Transfer-
Encoding value is x-token, which indicates that some other encoding scheme is used, for which a
name is to be supplied. The two actual encoding schemes defined are quoted-printable and
base64.

The quoted-printable transfer encoding is useful when the data consists largely of octets
that correspond to printable ASCII characters. In essence, it represents nonsafe characters
by the hexadecimal representation of their code and introduces reversible (soft) line
breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common one for
encoding arbitrary binary data in such a way as to be invulnerable to the processing by
mail transport programs.

Canonical Form

An important concept in MIME and S/MIME is that of canonical form. Canonical form is
a format, appropriate to the content type, that is standardized for use between systems.
This is in contrast to native form, which is a format that may be peculiar to a particular
system.

UNIT - IV

IP SECURITY OVERVIEW

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in the Internet
Architecture” (RFC 1636). The report identified key areas for security mechanisms. Among
these were the need to secure the network infrastructure from unauthorized monitoring and
control of network traffic and the need to secure end-user-to-end-user traffic using authentication
and encryption mechanisms.

To provide security, the IAB included authentication and encryption as necessary security
features in the next-generation IP, which has been issued as IPv6. Fortunately, these security
capabilities were designed to be usable both with the current IPv4 and the future IPv6. This
means that vendors can begin offering these features now, and many vendors now do have some
IPsec capabil- ity in their products. The IPsec specification now exists as a set of Internet
standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private
and public WANs, and across the Internet. Examples of its use include:

• Secure branch office connectivity over the Internet: A company can build a secure
virtual private network over the Internet or over a public WAN. This enables a business to rely
heavily on the Internet and reduce its need for private networks, saving costs and network
management overhead.

• Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet Service Provider(ISP) and gain sec
ure access to a company network. This reduces the cost of toll
charges for traveling employees and telecommuters.

• Establishing extranet and intranet connectivity with partners: IPsec can be used
to secure communication with other organizations, ensuring authentica- tion and confidentiality
and providing a key exchange mechanism.

• Enhancing electronic commerce security: Even though some Web and electronic co
mmerce applications have builtin security protocols, the use of IPsec enhancesthat security. IPsec g
uarantees that all traffic designated by the network administrator is both encrypted and authenticate
d, adding an additional layer of security to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all distributed appli

http://www.brainkart.com/article/IP-Security-Overview_8495/

cations (including remote logon, client/server, e-ail, file transfer, Web access, and so on) can be
secured.

Figure 19.1 is a typical scenario of IPsec usage. An organization maintains LANs at dispersed
locations. Nonsecure IP traffic is conducted on each LAN.
For traffic offsite, through some sort of private or public WAN, IPsec protocols are used.
These protocols operate in networking devices, such as a router or firewall, that con- nect each
LAN to the outside world. The IPsec networking device will typically encrypt and compress all
traffic going into the WAN and decrypt and decompress
traffic coming from the WAN; these operations are transparent to workstations and
servers on the LAN. Secure transmission is also possible with individual users who dial into
the WAN. Such user workstations must implement the IPsec protocols to provide security.

Benefits of IPsec

Some of the benefits of IPsec:

• When IPsec is implemented in a firewall or router, it provides strong security
that can be applied to all traffic crossing the perimeter. Traffic within a company
or workgroup does not incur the overhead of security-related processing.

• IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and
the firewall is the only means of entrance from the Internet into the organization.

• IPsec is below the transport layer (TCP, UDP) and so
is transparent to applications. There is no need to change software on a user or server system
 when IPsec is implemented in the firewall or router.
Even if IPsec is implemented in end systems, upper-layer software, including applications, is
not affected.

• IPsec can be transparent to end users. There is no need to train users on security mech
anisms, issue keying material on a per-user basis, or revoke keying material
when users leave the organization.

• IPsec can provide security for individual users if needed. This is useful for offsite
workers and for setting up a secure virtual subnetwork within an organization for
sensitive applications.

Routing Applications

In addition to supporting end users and protecting premises systems and networks, IPsec can
play a vital role in the routing architecture required for internetworking.
[HUIT98] lists the following examples of the use of IPsec. IPsec can assure that

• A router advertisement (a new router advertises its presence) comes from an
authorized router.

• A neighbor advertisement (a router seeks to establish or maintain a neighbor
relationship with a router in another routing domain) comes from an autho- rized router.

• A redirect message comes from the router to which the initial IP packet was sent.

• A routing update is not forged.

Without such security measures, an opponent can disrupt communications or divert some
traffic. Routing protocols such as Open Shortest Path First
(OSPF) should be run on top of security associations between routers that are defined by IPsec.

 IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key management.
The totality of the IPsec specification is scattered across dozens of

RFCs and draft IETF documents, making this the most complex and difficult to grasp
of all IETF specifications. The best way to grasp the scope of IPsec is to consult the
latest version of the IPsec document roadmap, which as of this writing is [FRAN09]. The docum
ents can be categorized into the following groups.

• Architecture: Covers the general concepts, security requirements, definitions,
and mechanisms defining IPsec technology. The current specification is RFC
4301, Security Architecture for the Internet Protocol.

• Authentication Header (AH): AH is an extension header to provide message
authentication. The current
specification is RFC 4302, IP Authentication Header. Because message authentication is provid
ed by ESP, the use of AH is deprecated. It is included in IPsecv3 for backward compatibility but
should not be used in new applications. We do not discuss AH in this chapter.

• Encapsulating Security Payload (ESP): ESP consists of an encapsulating head
er and trailer used to provide encryption or combined
encryption/authentication. The current specification is RFC 4303, IP Encapsulating Security Paylo
ad (ESP).

• Internet Key Exchange (IKE): This is a collection of documents describing
the key management schemes for use with IPsec. The main specification is RFC
4306, Internet Key Exchange (IKEv2) Protocol, but there are a number of related RFCs.

• Cryptographic algorithms: This category encompasses a large set of
documents that define and describe cryptographic algorithms for encryption, message
authentication, pseudorandom functions (PRFs), and cryptographic key exchange.

• Other: There are a variety of other IPsec-related RFCs, including those deal-
ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security
services at the IP layer by enabling a system to select required security protocols, determine the
algorithm(s) to use for the service(s), and
put in place any cryptographic keys required to provide the requested services. Two protocols are
used to provide security: an authentication protocol designated by the header of the protocol,
Authentication Header (AH); and a combined encryption/ authentication protocol designated by
the format of the packet for that protocol,
Encapsulating Security Payload (ESP). RFC 4301 lists the following services:

• Access control

• Connectionless integrity

• Data origin authentication

• Rejection of replayed packets (a form of partial sequence integrity)

• Confidentiality (encryption)

• Limited traffic flow confidentiality

IPSec Architecture

IPSec (IP Security) architecture uses two protocols to secure the traffic or data flow. These
protocols are ESP (Encapsulation Security Payload) and AH (Authentication Header). IPSec
Architecture include protocols, algorithms, DOI, and Key Management. All these components
are very important in order to provide the three main services:

 Confidentiality
 Authentication
 Integirity

IP Security Architecture:

1. Architecture:
Architecture or IP Security Architecture covers the general concepts, definitions, protocols,
algorithms and security requirements of IP Security technology.

https://www.geeksforgeeks.org/ipsec-architecture/
https://www.geeksforgeeks.org/ipsec-architecture/
https://www.geeksforgeeks.org/ipsec-architecture/

2. ESP Protocol:
ESP(Encapsulation Security Payload) provide the confidentiality service. Encapsulation Security
Payload is implemented in either two ways:

 ESP with optional Authentication.
 ESP with Authentication.

Packet Format:

 Security Parameter Index(SPI):
This parameter is used in Security Association. It is used to give a unique number to the
connection build between Client and Server.

 Sequence Number:
Unique Sequence number are allotted to every packet so that at the receiver side packets
can be arranged properly.

 Payload Data:
Payload data means the actual data or the actual message. The Payload data is in encrypted
format to achieve confidentiality.

 Padding:
Extra bits or space added to the original message in order to ensure confidentiality. Padding
length is the size of the added bits or space in the original message.

 Next Header:
Next header means the next payload or next actual data.

 Authentication Data
This field is optional in ESP protocol packet format.

3. Encryption algorithm:
Encryption algorithm is the document that describes various encryption algorithm used for
Encapsulation Security Payload.
4. AH Protocol:
AH (Authentication Header) Protocol provides both Authentication and Integrity service.
Authentication Header is implemented in one way only: Authentication along with Integrity.

Authentication Header covers the packet format and general issue related to the use of AH for
packet authentication and integrity.

5. Authentication Algorithm:
Authentication Algorithm contains the set of the documents that describe authentication
algorithm used for AH and for the authentication option of ESP.
6. DOI (Domain of Interpretation):
DOI is the identifier which support both AH and ESP protocols. It contains values needed for
documentation related to each other.
7. Key Management:
Key Management contains the document that describes how the keys are exchanged between
sender and receiver.

Authentication Header (AH):

The Authentication Header (AH) is an IPSec protocol that provides data integrity, data origin
authentication, and optional anti-replay services to IP. Authentication Header (AH) does not
provide any data confidentiality (Data encryption). Since Authentication Header (AH) does not
provide confidentiality, there is no need for an encryption algorithm. AH protocol is specified
in RFC 2402.

Authentication Header (AH) is an IP protocol and has been assigned the protocol number 51 by
IANA. In the IP header of Authentication Header (AH) protected datagram, the 8-bit protocol
field will be 51, indicating that following the IP header is an Authentication Header (AH) header.

Figure: Authentication Header (AH) - Header

Next Header: Next header field points to next protocol header that follows the AH header. It can
be a Encapsulating Security Payload (ESP) header, a TCP header or a UDP header (depending
on the network application).

Payload Length: specifies the length of AH in 32-bit words (4-byte units), minus 2.

Reserved: This field is currently set to 0, reserved for future use.

Security Parameter Index (SPI): The Security Parameter Index (SPI) field contains the
Security Parameter Index, is used to identify the security association used to authenticate this
packet.

Sequence Number: Sequence Number field is the number of messages sent from the sender to
the receiver using the current SA. The initial value of the counter is 1. The function of this field
is to enable replay protection, if required.

Authentication Data: The Authentication Data field contains the result of the Integrity Check
Value calculation, that can be used by the receiver to check the authentication and integrity of
the packet. This field is padded to make total length of the AH is an exact number of 32-bit
words. RFC 2402 requires that all AH implementations support at least HMAC-MD5-96 and
HMAC-SHA1-96.

https://www.ietf.org/rfc/rfc2402.txt

ENCAPSULATING SECURITY PAYLOAD

The Encapsulating Security Payload provides confidentiality services, including confidentiality
of message contents and limited traffic flow confidentiality. As an optional feature, ESP can also
provide an authentication service.

ESP Format:

Figure 1.7. IPSec ESP format

Figure 1.7 shows the format of an ESP packet. It contains the following fields:
• Security Parameters Index (32 bits): Identifies a security association.
• Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-
replay function, as discussed for AH.
• Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel
mode) that is protected by encryption.
• Padding (0255 bytes): The purpose of this field is discussed later.
• Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.
• Next Header (8 bits): Identifies the type of data contained in the payload data field by
identifying the first header in that payload
• Authentication Data (variable): A variable-length field (must be an integral number of 32-bit
words) that contains the Integrity. Check Value computed over the ESP packet minus the
Authentication Data field.

Encryption and Authentication Algorithms: The Payload Data, Padding, Pad Length, and
Next Header fields are encrypted by the ESP service. If the algorithm used to encrypt the
payload requires cryptographic synchronization data, such as an initialization vector (IV), then
these data may be carried explicitly at the beginning of the Payload Data field. If included, an IV
is usually not encrypted, although it is often referred to as being part of the ciphertext. The

current specification dictates that a compliant implementation must support DES in cipher block
chaining (CBC) mode. A number of other algorithms have been assigned identifiers in the DOI
document and could therefore easily be used for encryption; these include
• Three-key triple DES
• RC5
• IDEA
• Three-key triple IDEA
• CAST
• Blowfish

As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as with AH,
the current specification dictates that a compliant implementation must support HMAC- MD5-96
and HMAC-SHA-1-96.

Padding: The Padding field serves several purposes:
• If an encryption algorithm requires the plaintext to be a multiple of some number of bytes (e.g.,
the multiple of a single block for a block cipher), the Padding field is used to expand the
plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to the
required length.
• The ESP format requires that the Pad Length and Next Header fields be right aligned within a
32-bit word. Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding
field is used to assure this alignment.
• Additional padding may be added to provide partial traffic flow confidentiality by concealing
the actual length of the payload.

COMBINING SECURITY ASSOCIATIONS

An individual SA can implement either the AH or ESP protocol but not both. Sometimes a
particular traffic flow will call for the services provided by both AH
and ESP. Further, a particular traffic flow may require IPsec services between hosts and, for that
same flow, separate services between security gateways, such as fire-
walls. In all of these cases, multiple SAs must be employed for the same traffic flow
to achieve the desired IPsec services. The term security association bundle refers to a
sequence of SAs through which traffic must be processed to provide a desired set of IPsec
services. The SAs in a bundle may terminate at different endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

• Transport adjacency: Refers to applying more than one security protocol to
the same IP packet without invoking tunneling. This approach to combining AH and ESP allows
for only one level of combination; further nesting yields no added benefit since the processing is
performed at one IPsec instance: the (ultimate) destination.

• Iterated tunneling: Refers to the application of multiple layers of security
protocols effected through IP tunneling. This approach allows for multiple levels of nesting,
since each tunnel can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA between hosts t
ravel part of the way through a tunnel SA between security gateways. One interesting issue that
arises when considering SA bundles is

the order in which authentication and encryption may be applied between a given pair of endpoints
and the ways of doing so. We examine that issue next. Then we look at combinations of SAs that
involve at least one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet that has both
confidentiality and authentication between hosts. We look at several approaches.

ESP WITH AUTHENTICATION OPTION This approach is illustrated in Figure 19.8. In this
approach, the user first applies ESP to the data to be protected and then appends the
authentication data field. There are actually two subcases:

• Transport mode ESP: Authentication and encryption apply to the IP payload delivered to the
host, but the IP header is not protected.

• Tunnel mode ESP: Authentication applies to the entire IP packet delivered
to the outer IP destination address (e.g., a firewall), and authentication is performed at that
destination. The entire inner IP packet is protected by the
privacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

TRANSPORT ADJACENCY Another way to apply authentication after encryption is to
use two bundled transport SAs, with the inner being an ESP SA and the outer being
an AH SA. In this case, ESP is used without its authentication option. Because the inner SA is a
transport SA, encryption is applied to the IP payload. The resulting
packet consists of an IP header (and possibly IPv6 header extensions) followed by an ESP. AH is
then applied in transport mode, so that authentication covers the ESP plus
the original IP header (and extensions) except for mutable fields. The advantage of
this approach over simply using a single ESP SA with the ESP authentication option is that the a
uthentication covers more fields, including the source and destination IP addresses. The disadvant
age is the overhead of two SAs versus one SA.

TRANSPORT-TUNNEL BUNDLE The use of authentication prior to encryption might
be preferable for several reasons. First, because the authentication data are protected by
encryption, it is impossible for anyone to intercept the message and
alter the authentication data without detection. Second, it may be desirable to store the authentic
ation information
with the message at the destination for later reference. It is more convenient to do this if the aut
hentication information applies to the unencrypted message; otherwise the message would have
to be reencrypted to verify the authentication information.

One approach to applying authentication before encryption between two hosts is to use a bundle
consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case, authentication
is applied to the IP payload plus the IP header (and extensions) except for mutable fields. The

resulting IP packet is then processed in tunnel mode by ESP; the result is that the entire,
authenticated inner packet is encrypted and a new outer IP header (and extensions) is added.

 Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that must be
supported by compliant IPsec hosts (e.g., workstation, server) or security
gateways (e.g. firewall, router). These are illustrated in Figure 19.10. The lower part

of each case in the figure represents the physical connectivity of the elements; the
upper part represents logical connectivity via one or more nested SAs. Each SA can be either AH
or ESP. For host-to-host SAs, the mode may be either transport or
tunnel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement
IPsec. For any two end systems to communicate via an SA, they must share the appropri-
ate secret keys. Among the possible combinations are

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to
support authentication, encryption, authentication before encryption, and authenti- cation
after encryption.

Case 2. Security is provided only between gateways (routers, firewalls, etc.) and no hosts
implement IPsec. This case illustrates simple virtual private network
support. The security architecture document specifies that only a single tunnel SA is needed for
this case. The tunnel could support AH, ESP, or ESP with the authenti- cation option. Nested
tunnels are not required, because the IPsec services apply to the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi- nations discussed
for cases 1 and 2 are allowed here. The gateway-to-gateway tunnel provides either
authentication, confidentiality, or both for all traffic between end systems. When the gateway-to-
gateway tunnel is ESP, it also provides a limited form of traffic confidentiality. Individual hosts
can implement any additional IPsec ser- vices required for given applications or given users by
means of end-to-end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach an organization’s fir
ewall and then to gain access to some server or workstation behind the firewall.
 Only tunnel mode is required between the remote host and the firewall. As in case 1, one or two
 SAs may be used between the remote host and the local host.

WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets. As such, the security tools and approaches discussed so far in this
book are relevant to the issue of Web security. But, as pointed out in [GARF02],
the Web presents new challenges not generally appreciated in the context of computer and
network security.

The Internet is two-way. Unlike traditional publishing environments—even
electronic publishing systems involving teletext, voice response, or fax-back—
the Web is vulnerable to attacks on the Web servers over the Internet.

• The Web is increasingly serving as a highly visible outlet for
corporate and product information and as the platform for business transactions. Reputations
can be damaged and money can be lost if the Web servers are subverted.

• Although Web browsers are very easy to use, Web servers are relatively easy
to configure and manage, and Web content is increasingly easy to develop, the underlying
software is extraordinarily complex. This complex software may
hide many potential security flaws. The short history of the Web is filled with
examples of new and upgraded systems, properly installed, that are vulnerable
to a variety of security attacks.

• A Web server can be exploited as a launching pad into the corporation’s
or agency’s entire computer complex. Once the Web server is subverted, an attacker may be
able to gain access to data and systems not part of
the Web itself but connected to the server at the local site.

• Casual and untrained (in security matters) users are common clients for Web-
based services. Such users are not necessarily aware of the security risks that
exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 16.1 provides a summary of the types of security threats faced when using the Web. One
way to group these threats is in terms of passive and active attacks. Passive attacks include
eavesdropping on network traffic between browser and server and gaining
access to information on a Web site that is supposed to be restricted. Active attacks include
impersonating another user, altering messages in
transit between client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the
threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system secu- rity;
Part Four of this book addresses the issue of system security in general but is
also applicable to Web system security. Issues of traffic security fall into the category
of network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various approaches that
have been considered are similar in the services
they provide and, to some extent, in the mechanisms that they use, but they differ with respect to
their scope of applicability and their relative location within the TCP/IP protocol stack.

Figure 16.1 illustrates this difference. One way to provide Web security is to
use IP security (IPsec) (Figure 16.1a). The advantage of using IPsec is that it is trans- parent to e
nd users and applications and provides a general-purpose solution. Furthermore, IPsec includes
a filtering capability so that only selected traffic need incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just above TCP (Figure
16.1b). The foremost example of this approach is the Secure

Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer
Security (TLS). At this level, there are two implementation choices. For full general- ity, SSL (or
TLS) could be provided as part of the underlying protocol suite and therefore be transparent to
applications. Alternatively, SSL can be embedded in specific packages. For example, Netscape
and Microsoft Explorer browsers come
equipped with SSL, and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular appli- cation. Figure
16.1c shows examples of this architecture. The advantage of this
approach is that the service can be tailored to the specific needs of a given application.

Secure Socket Layer (SSL)

It provides security to the data that is transferred between web browser and server. SSL encrypt
the link between a web server and a browser which ensures that all data passed between them
remain private and free from attack.

Secure Socket Layer Protocols:
 SSL record protocol
 Handshake protocol
 Change-cipher spec protocol
 Alert protocol

SSL Protocol Stack:

https://practice.geeksforgeeks.org/problems/what-is-ssl
https://www.geeksforgeeks.org/secure-socket-layer-ssl/

SSL Record Protocol:

SSL Record provide two services to SSL connection.
 Confidentiality
 Message Integerity

In SSL Record Protocol application data is divided into fragments. The fragment is compressed
and then encrypted MAC (Message Authentication Code) generated by algorithms like SHA
(Secure Hash Protocol) and MD5 (Message Digest) is appended. After that encryption of the
data is done and in last SSL header is appended to the data.

Handshake Protocol:

Handshake Protocol is used to establish sessions. This protocol allow client and server to
authenticate each other by sending a series of messages to each other. Handshake protocol uses
four phases to complete its cycle.

 Phase-1: In Phase-1 both Client and Server send hello-packets to each other. In this IP
session, cipher suite and protocol version are exchanged for security purpose.

 Phase-2: Server send his certificate and Server-key-exchange. Server end the phase-2 by
sending Server-hello-end packet.

 Phase-3: In this phase Client reply to the server by sending his certificate and Client-
exchange-key.

 Phase-4: In Phase-4 Change-cipher suite occurred and after this Handshake Protocol
ends.

Change-cipher Protocol:

This protocol uses SSL record protocol. Unless Handshake Protocol is completed, the SSL
record Output will be in pending state. After handshake protocol the Pending state is converted
into Current state.

Change-cipher protocol consists of single message which is 1 byte in length and can have only
one value. This protocol purpose is to cause the pending state to be copied into current state.

Alert Protocol:

This protocol is used to convey SSL-related alerts to the peer entity. Each message in this
protocol contain 2 bytes.

Level is further classified into two parts:

 Warning:
This Alert have no impact on the connection between sender and receiver.

 Fatal Error:
This Alert breaks the connection between sender and receiver.

Silent Features of Secure Socket Layer:
 Advantage of this approach is that the service can be tailored to the specific needs of the

given application.
 Secure Socket Layer was originated by Netscape.
 SSL is designed to make use of TCP to provide reliable end-to-end secure service.
 This is two-layered protocol.

Transport Layer Security (TLS)

Transport Layer Securities (TLS) are designed to provide security at the transport layer. TLS was
derived from a security protocol called Secure Service Layer (SSL). TLS ensures that no third
party may eavdrops or tamper with any message.

https://www.geeksforgeeks.org/secure-socket-layer-ssl/

There are several benefits of TLS:

 Encryption:
TLS/SSL can help to secure transmitted data using encryption.

 Interoperability:
TLS/SSL works with most web browsers, including Microsoft Internet Explorer and on
most operating systems and web servers.

 Algorithm flexibility:
TLS/SSL provides operations for authentication mechanism, encryption algorithms and
hashing algorithm that are used during the secure session.

 Ease of Deployment:
Many applications TLS/SSL temporarily on a windows server 2003 operating systems.

 Ease of Use:
Because we implement TLS/SSL beneath the application layer, most of its operations are
completely invisible to client.

Working of TLS:
The client connect to server (using TCP), the client will be something. The client sends number
of specification:

1. Version of SSL/TLS.
2. which cipher suites, compression method it wants to use.

The server checks what the highest SSL/TLS version is that is supported by them both, picks a
cipher suite from one of the clients option (if it supports one) and optionally picks a compression
method. After this the basic setup is done, the server provides its certificate. This certificate must
be trusted either by the client itself or a party that the client trusts. Having verified the certificate
and being certain this server really is who he claims to be (and not a man in the middle), a key is
exchanged. This can be a public key, “PreMasterSecret” or simply nothing depending upon
cipher suite.

Both the server and client can now compute the key for symmetric encryption. The handshake is
finished and the two hosts can communicate securely. To close a connection by finishing. TCP
connection both sides will know the connection was improperly terminated. The connection
cannot be compromised by this through, merely interrupted.

Difference between Secure Socket Layer (SSL) and Transport Layer Security (TLS)

SSL stands for Secure Socket Layer while TLS stands for Transport Layer Security. Both Secure
Socket Layer and Transport Layer Security are the protocols used to provide the security
between web browser and web server.

The main differences between Secure Socket Layer and Transport Layer Security is that. In SSL
(Secure Socket Layer), Message digest is used to create master secret and It provides the basic
security services which are Authentication and confidentiality. while In TLS (Transport Layer
Security), Pseudo-random function is used to create master secret.

https://www.geeksforgeeks.org/computer-network-transport-layer-responsibilities/
https://practice.geeksforgeeks.org/problems/what-is-ssl
https://www.geeksforgeeks.org/tcp-ip-model/

There are some differences between SSL and TLS which are given below:

S.NO SSL TLS

1.

SSL stands for Secure Socket

Layer.

TLS stands for Transport Layer

Security.

2.

SSL (Secure Socket Layer)

supports Fortezza algorithm.

TLS (Transport Layer Security) does

not supports Fortezza algorithm.

3.

SSL (Secure Socket Layer) is the

3.0 version.

TLS (Transport Layer Security) is

the 1.0 version.

4.

In SSL(Secure Socket Layer),

Message digest is used to create

master secret.

In TLS(Transport Layer Security),

Pseudo-random function is used to

create master secret.

5.

In SSL(Secure Socket Layer),

Message Authentication Code

protocol is used.

In TLS(Transport Layer Security),

Hashed Message Authentication

Code protocol is used.

6.

SSL (Secure Socket Layer) is

complex than TLS(Transport Layer

Security).

TLS (Transport Layer Security) is

simple.

Secure Electronic Transaction (SET) Protocol

Secure Electronic Transaction or SET is a system which ensures security and integrity of
electronic transactions done using credit cards in a scenario. SET is not some system that enables
payment but it is a security protocol applied on those payments. It uses different encryption and
hashing techniques to secure payments over internet done through credit cards. SET protocol was
supported in development by major organizations like Visa, Mastercard, Microsoft which
provided its Secure Transaction Technology (STT) and NetScape which provided technology of
Secure Socket Layer (SSL).
SET protocol restricts revealing of credit card details to merchants thus keeping hackers and
thieves at bay. SET protocol includes Certification Authorities for making use of standard Digital
Certificates like X.509 Certificate.

Before discussing SET further, let’s see a general scenario of electronic transaction, which
includes client, payment gateway, client financial institution, merchant and merchant financial
institution.

Requirements in SET :

SET protocol has some requirements to meet, some of the important requirements are :
 It has to provide mutual authentication i.e., customer (or cardholder) authentication by

confirming if the customer is intended user or not and merchant authentication.
 It has to keep the PI (Payment Information) and OI (Order Information) confidential by

appropriate encryptions.
 It has to be resistive against message modifications i.e., no changes should be allowed in

the content being transmitted.
 SET also needs to provide interoperability and make use of best security mechanisms.

https://www.geeksforgeeks.org/secure-electronic-transaction-set-protocol/

Participants in SET :

In the general scenario of online transaction, SET includes similar participants:
1. Cardholder – customer
2. Issuer – customer financial institution
3. Merchant
4. Acquirer – Merchant financial
5. Certificate authority – Authority which follows certain standards and issues

certificates(like X.509V3) to all other participants.

SET functionalities :

o Provide Authentication
 Merchant Authentication – To prevent theft, SET allows customers to check

previous relationships between merchant and financial institution. Standard X.509V3
certificates are used for this verification.

 Customer / Cardholder Authentication – SET checks if use of credit card is
done by an authorized user or not using X.509V3 certificates.

o Provide Message Confidentiality : Confidentiality refers to preventing unintended
people from reading the message being transferred. SET implements confidentiality by
using encryption techniques. Traditionally DES is used for encryption purpose.

o Provide Message Integrity : SET doesn’t allow message modification with the help of
signatures. Messages are protected against unauthorized modification using RSA digital
signatures with SHA-1 and some using HMAC with SHA-1,

Dual Signature :

The dual signature is a concept introduced with SET, which aims at connecting two information
pieces meant for two different receivers :
Order Information (OI) for merchant
Payment Information (PI) for bank

You might think sending them separately is an easy and more secure way, but sending them in a
connected form resolves any future dispute possible. Here is the generation of dual signature:

Where,

 PI stands for payment information

 OI stands for order information

 PIMD stands for Payment Information Message Digest

 OIMD stands for Order Information Message Digest

 POMD stands for Payment Order Message Digest

 H stands for Hashing

 E stands for public key encryption

 KPc is customer's private key

 || stands for append operation

 Dual signature, DS= E(KPc, [H(H(PI)||H(OI))])

Purchase Request Generation :

The process of purchase request generation requires three inputs:

 Payment Information (PI)
 Dual Signature
 Order Information Message Digest (OIMD)

The purchase request is generated as follows:

Here,

PI, OIMD, OI all have the same meanings as before.

The new things are :

EP which is symmetric key encryption

Ks is a temporary symmetric key

KUbank is public key of bank

CA is Cardholder or customer Certificate

Digital Envelope = E(KUbank, Ks)

Purchase Request Validation on Merchant Side :

The Merchant verifies by comparing POMD generated through PIMD hashing with POMD
generated through decryption of Dual Signature as follows:

Since we used Customer private key in encryption here we use KUc which is public key of
customer or cardholder for decryption ‘D’.

 Payment Authorization and Payment Capture :

Payment authorization as the name suggests is the authorization of payment information by
merchant which ensures payment will be received by merchant. Payment capture is the process

by which merchant receives payment which includes again generating some request blocks to
gateway and payment gateway in turn issues payment to merchant.

UNIT - V
INTRUDERS

One of the most publicized attacks to security is the intruder, generally referred to as hacker or
cracker. Three classes of intruders are as follows:

· Masquerader – an individual who is not authorized to use the computer and who penetrates a
system s access controls to exploit a legitimate user s account.‟s access controls to exploit a legitimate user‟s account. ‟s access controls to exploit a legitimate user‟s account.

· Misfeasor – a legitimate user who accesses data, programs, or resources for which such access
is not authorized, or who is authorized for such access but misuse his or her privileges.

· Clandestine user – an individual who seizes supervisory control of the system and uses this
control to evade auditing and access controls or to suppress audit collection.

 The masquerader is likely to be an outsider; the misfeasor generally is an insider; and the
clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the scale, there
are many people who simply wish to explore internets and see what is out there. At the
serious end are individuals who are attempting to read privileged data, perform
unauthorized modifications to data, or disrupt the system. Benign intruders might be
tolerable, although they do consume resources and may slow performance for legitimate
users. However there is no way in advance to know whether an intruder will be benign or
malign.

An analysis of previous attack revealed that there were two levels of hackers:

· The high levels were sophisticated users with a thorough knowledge of the technology.

· The low levels were the „foot soldiers who merely use the supplied cracking programs with‟s access controls to exploit a legitimate user‟s account.
little understanding of how they work.

one of the results of the growing awareness of the intruder problem has been the establishment of
a number of Computer Emergency Response Teams (CERT). these co-operative ventures collect
information about system vulnerabilities and disseminate it to systems managers. Unfortunately,
hackers can also gain access to CERT reports.

In addition to running password cracking programs, the intruders attempted to modify
login software to enable them to capture passwords of users logging onto the systems.

 Intrusion techniques

The objective of the intruders is to gain access to a system or to increase the range of
privileges accessible on a system. Generally, this requires the intruders to acquire
information that should be protected. In most cases, the information is in the form of a
user password.

Typically, a system must maintain a file that associates a password with each authorized
user. If such a file is stored with no protection, then it is an easy matter to gain access to
it. The password files can be protected in one of the two ways:

· One way encryption – the system stores only an encrypted form of user s‟s access controls to exploit a legitimate user‟s account. password.

In practice, the system usually performs a one way transformation (not reversible) in which the
password is used to generate a key for the encryption function and in which a fixed length output
is produced.

· Access control – access to the password file is limited to one or a very few accounts.

The following techniques are used for learning passwords.

· Try default passwords used with standard accounts that are shipped with the system.

Many administrators do not bother to change these defaults.

· Exhaustively try all short passwords.

· Try words in the system s online dictionary or a list of likely passwords.‟s access controls to exploit a legitimate user‟s account.

· Collect information about users such as their full names, the name of their spouse and
children, pictures in their office and books in their office that are related to hobbies.

· Try user s phone number, social security numbers and room numbers.‟s access controls to exploit a legitimate user‟s account.

· Try all legitimate license plate numbers.

· Use a torjan horse to bypass restriction on access.

· Tap the line between a remote user and the host system.

Two principle countermeasures:

 Detection – concerned with learning of an attack, either before or after its success.
 Prevention – challenging security goal and an uphill bottle at all times.

INTRUSION DETECTION:

Inevitably, the best intrusion prevention system will fail. A system's second line of
defense is intrusion detection, and this has been the focus of much research in recent
years. This interest is motivated by a number of considerations, including the following:

· If an intrusion is detected quickly enough, the intruder can be identified and ejected from the

system before any damage is done or any data are compromised.

· An effective intrusion detection system can serve as a deterrent, so acting to prevent intrusions.

· Intrusion detection enables the collection of information about intrusion techniques that can be
used to strengthen the intrusion prevention facility.

Intrusion detection is based on the assumption that the behavior of the intruder differs
from that of a legitimate user in ways that can be quantified.

Figure 5.2.1 suggests, in very abstract terms, the nature of the task confronting the designer of
an intrusion detection system. Although the typical behavior of an intruder differs from the
typical behavior of an authorized user, there is an overlap in these behaviors. Thus, a loose
interpretation of intruder behavior, which will catch more intruders, will also lead to a number of
"false positives," or authorized users identified as intruders. On the other hand, an attempt to
limit false positives by a tight interpretation of intruder behavior will lead to an increase in false
negatives, or intruders not identified as intruders. Thus, there is an element of compromise and
art in the practice of intrusion detection.

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
mk:@MSITStore:C:%5C%5C%5C%5C%5C%5C%5C%5CDocuments%20and%20Settings%5C%5C%5C%5C%5C%5C%5C%5Csethukarasi%5C%5C%5C%5C%5C%5C%5C%5CDesktop%5C%5C%5C%5C%5C%5C%5C%5Ccryptography-and-network-security-4th-edition.9780131873162.25360.chm::/0131873164/ch18lev1sec2.html#ch18fig01
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

 1. The approaches to intrusion detection:

Statistical anomaly detection: Involves the collection of data relating to the behavior of
legitimate users over a period of time. Then statistical tests are applied to observed
behavior to determine with a high level of confidence whether that behavior is not
legitimate user behavior.

Threshold detection: This approach involves defining thresholds, independent
of user, for the frequency of occurrence of various events.

Profile based: A profile of the activity of each user is developed and used to
detect changes in the behavior of individual accounts.

Rule-based detection: Involves an attempt to define a set of rules that can be
used to decide that a given behavior is that of an intruder.

Anomaly detection: Rules are developed to detect deviation from previous
usage patterns.

Penetration identification: An expert system approach that searches
for suspicious behavior.

In terms of the types of attackers listed earlier, statistical anomaly detection is effective against
masqueraders. On the other hand, such techniques may be unable to deal with misfeasors. For
such attacks, rule-based approaches may be able to recognize events and sequences that, in
context, reveal penetration. In practice, a system may exhibit a combination of both approaches
to be effective against a broad range of attacks.

Audit Records

A fundamental tool for intrusion detection is the audit record. Some record of ongoing activity
by users must be maintained as input to an intrusion detection system. Basically, two plans are
used:

· Native audit records: Virtually all multiuser operating systems include accounting
software that collects information on user activity. The advantage of using this information is
that no additional collection software is needed. The disadvantage is that the native audit records

· may not contain the needed information or may not contain it in a convenient form.

· Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the intrusion

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

detection system. One advantage of such an approach is that it could be made vendor
independent and ported to a variety of systems. The disadvantage is the extra overhead involved
in having, in effect, two accounting packages running on a machine.

Each audit record contains the following fields:

· Subject: Initiators of actions. A subject is typically a terminal user but might also be a

o process acting on behalf of users or groups of users.

· Object: Receptors of actions. Examples include files, programs, messages, records, terminals,
printers, and user- or program-created structures

· Resource-Usage: A list of quantitative elements in which each element gives the amount used
of some resource (e.g., number of lines printed or displayed, number of records read

o or written, processor time, I/O units used, session elapsed time).

· Time-Stamp: Unique time-and-date stamp identifying when the action took place. Most user
operations are made up of a number of elementary actions. For example, a file copy involves the
execution of the user command, which includes doing access validation and setting up the copy,
plus the read from one file, plus the write to another file. Consider the command

COPY GAME.EXE TO <Library>GAME.EXE

issued by Smith to copy an executable file GAME from the current directory to the <Library>
directory. The following audit records may be generated:

In this case, the copy is aborted because Smith does not have write permission to <Library>. The
decomposition of a user operation into elementary actions has three advantages:

http://www.brainkart.com/article/Intrusion-Detection_8370/

Because objects are the protectable entities in a system, the use of elementary actions enables an
audit of all behavior affecting an object. Thus, the system can detect attempted subversions of
access

Single-object, single-action audit records simplify the model and the implementation.

Because of the simple, uniform structure of the detection-specific audit records, it may be
relatively easy to obtain this information or at least part of it by a straightforward mapping from
existing native audit records to the detection-specific audit records.

1.1 Statistical Anomaly Detection:

As was mentioned, statistical anomaly detection techniques fall into two broad categories:
threshold detection and profile-based systems. Threshold detection involves counting the
number of occurrences of a specific event type over an interval of time. If the count surpasses
what is considered a reasonable number that one might expect to occur, then intrusion is
assumed.

Threshold analysis, by itself, is a crude and ineffective detector of even moderately sophisticated
attacks. Both the threshold and the time interval must be determined.

1.2 Profile-based anomaly detection focuses on characterizing the past behavior of individual
users or related groups of users and then detecting significant deviations. A profile may consist
of a set of parameters, so that deviation on just a single parameter may not be sufficient in itself
to signal an alert.

The foundation of this approach is an analysis of audit records. The audit records provide
input to the intrusion detection function in two ways. First, the designer must decide on a
number of quantitative metrics that can be used to measure user behavior. Examples of
metrics that are useful for profile-based intrusion detection are the following:

· Counter: A nonnegative integer that may be incremented but not decremented until it is reset

by management action. Typically, a count of certain event types is kept over a particular period
of time. Examples include the number of logins by a single user during an hour, the number of
times a given command is executed during a single user session, and the number of password
failures during a minute.

· Gauge: A nonnegative integer that may be incremented or decremented. Typically, a gauge is
used to measure the current value of some entity. Examples include the number of logical
connections assigned to a user application and the number of outgoing messages queued for a
user process.

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

· Interval timer: The length of time between two related events. An example is the length of

time between successive logins to an account.

· Resource utilization: Quantity of resources consumed during a specified period. Examples
include the number of pages printed during a user session and total time consumed by a program
execution.

Given these general metrics, various tests can be performed to determine whether current activity
fits within acceptable limits.

· Mean and standard deviation
· Multivariate
· Markov process
· Time series
· Operational

The simplest statistical test is to measure the mean and standard deviation of a parameter
over some historical period. This gives a reflection of the average behavior and its
variability.

A multivariate model is based on correlations between two or more variables. Intruder behavior
may be characterized with greater confidence by considering such correlations (for example,
processor time and resource usage, or login frequency and session elapsed time).

A Markov process model is used to establish transition probabilities among various
states. As an example, this model might be used to look at transitions between certain
commands.

A time series model focuses on time intervals, looking for sequences of events that
happen too rapidly or too slowly. A variety of statistical tests can be applied to
characterize abnormal timing.

Finally, an operational model is based on a judgment of what is considered abnormal,
rather than an automated analysis of past audit records. Typically, fixed limits are defined
and intrusion is suspected for an observation that is outside the limits.

1.3 Rule-Based Intrusion Detection

Rule-based techniques detect intrusion by observing events in the system and applying a set of
rules that lead to a decision regarding whether a given pattern of activity is or is not suspicious.

http://www.brainkart.com/article/Intrusion-Detection_8370/

Rule-based anomaly detection is similar in terms of its approach and strengths to
statistical anomaly detection. With the rule-based approach, historical audit records are analyzed
to identify usage patterns and to generate automatically rules that describe those patterns. Rules
may represent past behavior patterns of users, programs, privileges, time slots, terminals, and so
on. Current behavior is then observed, and each transaction is matched against the set of rules to
determine if it conforms to any historically observed pattern of behavior.

As with statistical anomaly detection, rule-based anomaly detection does not require
knowledge of security vulnerabilities within the system. Rather, the scheme is based on
observing past behavior and, in effect, assuming that the future will be like the past

Rule-based penetration identification takes a very different approach to intrusion
detection, one based on expert system technology. The key feature of such systems is the use of
rules for identifying known penetrations or penetrations that would exploit known weaknesses.
Example heuristics are the following:

o Users should not read files in other users' personal directories.

o Users must not write other users' files.

o Users who log in after hours often access the same files they used earlier.

o Users do not generally open disk devices directly but rely on higher-level
operating system utilities.

o Users should not be logged in more than once to the same system.

o Users do not make copies of system programs.

2 The Base-Rate Fallacy

To be of practical use, an intrusion detection system should detect a substantial
percentage of intrusions while keeping the false alarm rate at an acceptable level. If only
a modest percentage of actual intrusions are detected, the system provides a false sense of
security. On the other hand, if the system frequently triggers an alert when there is no
intrusion (a false alarm), then either system managers will begin to ignore the alarms, or
much time will be wasted analyzing the false alarms.

Unfortunately, because of the nature of the probabilities involved, it is very difficult to
meet the standard of high rate of detections with a low rate of false alarms. In general, if

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

the actual numbers of intrusions is low compared to the number of legitimate uses of a
system, then the false alarm rate will be high unless the test is extremely discriminating.

3 Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand-alone
facilities. The typical organization, however, needs to defend a distributed collection of hosts
supported by a LAN Porras points out the following major issues in the design of a
distributed intrusion detection system

A distributed intrusion detection system may need to deal with different audit record
formats. In a heterogeneous environment, different systems will employ different native
audit collection systems and, if using intrusion detection, may employ different formats
for security-related audit records.

One or more nodes in the network will serve as collection and analysis points for the data
from the systems on the network. Thus, either raw audit data or summary data must be
transmitted across the network. Therefore, there is a requirement to assure the integrity
and confidentiality of these data.

Either a centralized or decentralized architecture can be used.

Below figure shows the overall architecture, which consists of three main components:

· Host agent module: An audit collection module operating as a background process on
a monitored system. Its purpose is to collect data on security-related events on the host and
transmit these to the central manager.

·
· LAN monitor agent module: Operates in the same fashion as a host agent module except that

it analyzes LAN traffic and reports the results to the central manager.
·

· Central manager module: Receives reports from LAN monitor and host agents and processes

and correlates these reports to detect intrusion.

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

The scheme is designed to be independent of any operating system or system auditing
implementation.

· The agent captures each audit record produced by the native audit collection

system.
· A filter is applied that retains only those records that are of security interest.
· These records are then reformatted into a standardized format referred to as the

host audit record (HAR).
· Next, a template-driven logic module analyzes the records for suspicious

activity.
· At the lowestlevel, the agent scans for notable events that are of interest

independent of any past events.
· Examplesinclude failed file accesses, accessing system files, and changing a

file's access control.
· At the next higher level, the agent looks for sequences of events, such as known

attack atterns (signatures).

· Finally, the agent looks for anomalous behavior of an individual user based on a
historical profile of that user, such as number of programs executed, number of
files accessed, and the like.

· When suspicious activity is detected, an alert is sent to the central manager.
· The central manager includes an expert system that can draw inferences from

received data.
· The manager may also query individual systems for copies of HARs to correlate

with those from other agents.
· The LAN monitor agent also supplies information to the central manager.
· The LAN monitor agent audits host-host connections, services used, and

volume of traffic.
· It searches for significant events, such as sudden changes in network load,

the use of
· security-related services, and network activities such as rlogin.

The architecture is quite general and flexible. It offers a foundation for a machine-independent
approach that can expand from stand-alone intrusion detection to a system that is able to
correlate activity from a number of sites and networks to detect suspicious activity that would
otherwise remain undetected.

4 Honeypots

A relatively recent innovation in intrusion detection technology is the honeypot. Honeypots are
decoy systems that are designed to lure a potential attacker away from critical systems.
Honeypots are designed to

· divert an attacker from accessing critical systems

· collect information about the attacker's activity

· encourage the attacker to stay on the system long enough for administrators to respond

http://www.brainkart.com/article/Intrusion-Detection_8370/

 These systems are filled with fabricated information designed to appear valuable but that a
legitimate user of the system wouldn't access. Thus, any access to the honeypot is suspect.

5 Intrusion Detection Exchange Format

To facilitate the development of distributed intrusion detection systems that can function
across a wide range of platforms and environments, standards are needed to support
interoperability. Such standards are the focus of the IETF Intrusion Detection Working
Group.

The outputs of this working group include the following:

a. A requirements document, which describes the high-level functional requirements for
communication between intrusion detection systems and with management systems,
including the rationale for those requirements.

b. A common intrusion language specification, which describes data formats that satisfy
the requirements.

c. A framework document, which identifies existing protocols best used for

communication between intrusion detection systems, and describes how the devised data
formats relate to them.

http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/
http://www.brainkart.com/article/Intrusion-Detection_8370/

PASSWORD MANAGEMENT

1. Password Protection

The front line of defense against intruders is the password system. Virtually all multiuser
systems require that a user provide not only a name or identifier (ID) but also a password.
The password serves to authenticate the ID of the individual logging on to the system. In
turn, the ID provides security in the following ways:

· The ID determines whether the user is authorized to gain access to a system.

· The ID determines the privileges accorded to the user.

· The ID is used in ,what is referred to as discretionary access control. For example, by listing
the IDs of the other users, a user may grant permission to them to read files owned by that user.

2. The Vulnerability of Passwords

To understand the nature of the threat to password-based systems, let us consider a
scheme that is widely used on UNIX, the following procedure is employed.

· Each user selects a password of up to eight printable characters in length.

· This is converted into a 56-bit value (using 7-bit ASCII) that serves as the key input to an
encryption routine.

· The encryption routine, known as crypt(3), is based on DES. The DES algorithm is modified
using a 12-bit "salt" value.

· Typically, this value is related to the time at which the password is assigned to the user.

· The modified DES algorithm is exercised with a data input consisting of a 64-bit block of zeros.

· The output of the algorithm then serves as input for a second encryption.

· This process is repeated for a total of 25 encryptions.

· The resulting 64-bit output is then translated into an 11-character sequence.

· The hashed password is then stored, together with a plaintext copy of the salt, in the password
file for the corresponding user ID.

· This method has been shown to be secure against a variety of cryptanalytic attacks

The salt serves three purposes:

· It prevents duplicate passwords from being visible in the password file. Even if two users
choose the same password, those passwords will be assigned at different times. Hence, the
"extended" passwords of the two users will differ.

· It effectively increases the length of the password without requiring the user to remember two
additional characters.

· It prevents the use of a hardware implementation of DES, which would ease the difficulty of a
brute-force guessing attack.

When a user attempts to log on to a UNIX system, the user provides an ID and a password. The
operating system uses the ID to index into the password file and retrieve the plaintext salt and the
encrypted password. The salt and user-supplied password are used as input to the encryption
routine. If the result matches the stored value, the password is accepted.The encryption routine is
designed to discourage guessing attacks. Software implementations of DES are slow compared
to hardware versions, and the use of 25 iterations multiplies the time required by 25.

Thus, there are two threats to the UNIX password scheme. First, a user can gain access on a
machine using a guest account or by some other means and then run a password guessing
program, called a password cracker, on that machine.

As an example, a password cracker was reported on the Internet in August 1993.
Using a Thinking Machines Corporation parallel computer, a performance of 1560
encryptions per second per vector unit was achieved. With four vector units per
processing node (a standard configuration), this works out to 800,000 encryptions per
second on a 128-node machine (which is a modest size) and 6.4 million encryptions per
second on a 1024-node machine.

Password length is only part of the problem. Many people, when permitted to choose their own
password, pick a password that is guessable, such as their own name, their street name, a
common dictionary word, and so forth. This makes the job of password cracking straightforward.

Following strategy was used:

Try the user's name, initials, account name, and other relevant personal information. In
all, 130 different permutations for each user were tried.

Try words from various dictionaries.

Try various permutations on the words from step 2.

Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

3. Access Control

One way to thwart a password attack is to deny the opponent access to the password file.
If the encrypted password portion of the file is accessible only by a privileged user, then
the opponent cannot read it without already knowing the password of a privileged user.

Password Selection Strategies
Four basic techniques are in use:
· User education

· Computer-generated passwords

· Reactive password checking
· Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be provided with
guidelines for selecting strong passwords. This user education strategy is unlikely to succeed at
most installations, particularly where there is a large user population or a lot of turnover. Many
users will simply ignore the guidelines

Computer-generated passwords also have problems. If the passwords are quite random
in nature, users will not be able to remember them. Even if the password is pronounceable, the
user may have difficulty remembering it and so be tempted to write it down

A reactive password checking strategy is one in which the system periodically runs its
own password cracker to find guessable passwords.

The most promising approach to improved password security is a proactive password checker.
In this scheme, a user is allowed to select his or her own password. However, at the time of

selection, the system checks to see if the password is allowable and, if not, rejects it. Such
checkers are based on the philosophy that, with sufficient guidance from the system, users can
select memorable passwords from a fairly large password space that are not likely to be guessed
in a dictionary attack.

The first approach is a simple system for rule enforcement. For example, the following rules
could be enforced:

· All passwords must be at least eight characters long.

· In the first eight characters, the passwords must include at least one each of uppercase,
lowercase, numeric digits, and punctuation marks. These rules could be coupled with advice to
the user. Although this approach is superior to simply educating users, it may not be sufficient to
thwart password crackers. This scheme alerts crackers as to which passwords not to try but may
still make it possible to do password cracking.

Another possible procedure is simply to compile a large dictionary of possible "bad" passwords.
When a user selects a password, the system checks to make sure that it is not on the disapproved
list.

There are two problems with this approach:

· Space: The dictionary must be very large to be effective..

· Time: The time required to search a large dictionary may itself be large

Two techniques for developing an effective and efficient proactive password checker that
is based on rejecting words on a list show promise. One of these develops a Markov
model for the generation of guessable passwords. This model shows a language
consisting of an alphabet of three characters. The state of the system at any time is the
identity of the most recent letter. The value on the transition from one state to another
represents the probability that one letter follows another. Thus, the probability that the
next letter is b, given that the current letter is a, is 0.5.

In general, a Markov model is a quadruple [m, A, T, k], where m is the number of states in the
model, A is the state space, T is the matrix of transition probabilities, and k is the order of the
model. For a kth-order model, the probability of making a transition to a particular letter depends
on the previous k letters that have been generated.

The authors report on the development and use of a second-order model. To begin, a dictionary
of guessable passwords is constructed. Then the transition matrix is calculated as follows:

1. Determine the frequency matrix f, where f(i, j, k) is the number of occurrences of the trigram
consisting of the ith, jth, and kth character. For example, the password parsnips yields the
trigrams par, ars, rsn, sni, nip, and ips.

2. For each bigram ij, calculate f(i, j,∞) as the total number of trigrams beginning with ij. For
example, f(a, b,∞) would be the total number of trigrams of the form aba, abb, abc, and so on.

3. Compute the entries of T as follows:

T(i,j,k) = f(i, j, k) / f(i, j,∞)

The result is a model that reflects the structure of the words in the dictionary.

A quite different approach has been reported by Spafford. It is based on the use of a
Bloom filter. To begin, we explain the operation of the Bloom filter. A Bloom filter of
order k consists of a set of k independent hash functions H1(x), H2(x),..., Hk(x), where
each function maps a password into a hash value in the range 0 to N - 1 That is,

Hi(Xj) = y 1 ≤i ≤k; 1 ≤j ≤D; 0 ≤y ≤N- 1

where
Xj = jth word in password dictionary
D = number of words in password dictionary

The following procedure is then applied to the dictionary:

· A hash table of N bits is defined, with all bits initially set to 0.

· For each password, its k hash values are calculated, and the corresponding bits in the hash table
are set to 1. Thus, if Hi(Xj) = 67 for some (i, j), then the sixty-seventh bit of the hash table is set
to 1; if the bit already has the value 1, it

remains at 1.

When a new password is presented to the checker, its k hash values are calculated. If all the
corresponding bits of the hash table are equal to 1, then the password is rejected.

VIRUSES AND RELATED THREATS

Perhaps the most sophisticated types of threats to computer systems are presented by programs
that exploit vulnerabilities in computing systems.

1. Malicious Programs

Malicious software can be divided into two categories:

those that need a host program, and those that are independent.

The former are essentially fragments of programs that cannot exist independently of some actual
application program, utility, or system program. Viruses, logic bombs, and backdoors are
examples. The latter are self-contained programs that can be scheduled and run by the operating
system. Worms and zombie programs are examples.

https://www.brainkart.com/article/Viruses-And-Related-Threats_8375/

2. The Nature of Viruses

A virus is a piece of software that can "infect" other programs by modifying them; the
modification includes a copy of the virus program, which can then go on to infect other
programs.

A virus can do anything that other programs do. The only difference is that it attaches itself to
another program and executes secretly when the host program is run. Once a virus is executing, it
can perform any function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

· Dormant phase: The virus is idle. The virus will eventually be activated by some event, such
as a date, the presence of another program or file, or the capacity of the disk exceeding some
limit. Not all viruses have this stage.

· Propagation phase: The virus places an identical copy of itself into other programs or into
certain system areas on the disk. Each infected program will now contain a clone of the virus,
which will itself enter a propagation phase.

· Triggering phase: The virus is activated to perform the function for which it was intended. As
with the dormant phase, the triggering phase can be caused by a variety of system events,
including a count of the number of times that this copy of the virus has made copies of itself.

· Execution phase: The function is performed. The function may be harmless, such as
a message on the screen, or damaging, such as the destruction of programs and data files.

3. Virus Structure

A virus can be prepended or postpended to an executable program, or it can be embedded in
some other fashion. The key to its operation is that the infected program, when invoked, will first
execute the virus code and then execute the original code of the program.

An infected program begins with the virus code and works as follows.

The first line of code is a jump to the main virus program. The second line is a special marker
that is used by the virus to determine whether or not a potential victim program has already been
infected with this virus.

When the program is invoked, control is immediately transferred to the main virus program. The
virus program first seeks out uninfected executable files and infects them. Next, the virus may
perform some action, usually detrimental to the system.

This action could be performed every time the program is invoked, or it could be a logic bomb
that triggers only under certain conditions.

Finally, the virus transfers control to the original program. If the infection phase of the program
is reasonably rapid, a user is unlikely to notice any difference between the execution of an
infected and uninfected program.

A virus such as the one just described is easily detected because an infected version of a program
is longer than the corresponding uninfected one. A way to thwart such a simple means of
detecting a virus is to compress the executable file so that both the infected and uninfected
versions are of identical length.. The key lines in this virus are numbered. We assume that
program P1 is infected with the virus CV. When this program is invoked, control passes to its
virus, which performs the following steps:

1. For each uninfected file P2 that is found, the virus first compresses that file to produce P'2,
which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.
3. The compressed version of the original infected program, P'1, is uncompressed.
4. The uncompressed original program is executed.

In this example, the virus does nothing other than propagate. As in the previous example, the
virus may include a logic bomb.

4. Initial Infection

Once a virus has gained entry to a system by infecting a single program, it is in a position to
infect some or all other executable files on that system when the infected program executes.
Thus, viral infection can be completely prevented by preventing the virus from gaining entry in
the first place. Unfortunately, prevention is extraordinarily difficult because a virus can be part of
any program outside a system. Thus, unless one is content to take an absolutely bare piece of
iron and write all one's own system and application programs, one is vulnerable.

VIRUS COUNTERMEASURES

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: The next best approach is to be able to
do the following:

· Detection: Once the infection has occurred, determine that it has occurred and locate
the virus.

· Identification: Once detection has been achieved, identify the specific virus that has infected a
program.

· Removal: Once the specific virus has been identified, remove all traces of the virus from the
infected program and restore it to its original state. Remove the virus from all infected systems
so that the disease cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative is to
discard the infected program and reload a clean backup version.

There are four generations of antivirus software:

· First generation: simple scanners

· Second generation: heuristic scanners

· Third generation: activity traps

· Fourth generation: full-featured protection

 A first-generation scanner requires a virus signature to identify a virus.. Such signature-
specific scanners are limited to the detection of known viruses. Another type of first-generation
scanner maintains a record of the length of programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the scanner
uses heuristic rules to search for probable virus infection. One class of such scanners looks for
fragments of code that are often associated with viruses.

Another second-generation approach is integrity checking. A checksum can be appended to each
program. If a virus infects the program without changing the checksum, then an integrity check
will catch the change. To counter a virus that is sophisticated enough to change the checksum
when it infects a program, an encrypted hash function can be used. The encryption key is stored
separately from the program so that the virus cannot generate a new hash code and encrypt that.
By using a hash function rather than a simpler checksum, the virus is prevented from adjusting
the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a virus by its
actions rather than its structure in an infected program. Such programs have the advantage that it
is not necessary to develop signatures and heuristics for a wide array of viruses. Rather, it is
necessary only to identify the small set of actions that indicate an infection is being attempted
and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus techniques used
in conjunction. These include scanning and activity trap components. In addition, such a package
includes access control capability, which limits the ability of viruses to penetrate a system and
then limits the ability of a virus to update files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more comprehensive defense
strategy is employed, broadening the scope of defense to more general-purpose computer
security measures.

Advanced Antivirus Techniques

More sophisticated antivirus approaches and products continue to appear. In this subsection, we
highlight two of the most important.

Generic Decryption

Generic decryption (GD) technology enables the antivirus program to easily detect even the most
complex polymorphic viruses, while maintaining fast scanning speeds . In order to detect such a
structure, executable files are run through a GD scanner, which contains the following elements:

 · CPU emulator: A software-based virtual computer. Instructions in an executable file
are interpreted by the emulator rather than executed on the underlying processor. The emulator
includes software versions of all registers and other processor hardware, so that the underlying
processor is unaffected by programs interpreted on the emulator.

 · Virus signature scanner: A module that scans the target code looking for known
virus signatures.

· Emulation control module: Controls the execution of the target code.

Digital Immune System

The digital immune system is a comprehensive approach to virus protection developed by IBM].
The motivation for this development has been the rising threat of Internet-based virus
propagation.Two major trends in Internet technology have had an increasing impact on the rate
of virus propagation in recent years:

Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook make it very
simple to send anything to anyone and to work with objects that are received.

Mobile-program systems: Capabilities such as Java and ActiveX allow programs to move on
their own from one system to another.

· A monitoring program on each PC uses a variety of heuristics based on system behavior,
suspicious changes to programs, or family signature to infer that a virus may be present. The
monitoring program forwards a copy of any program thought to be infected to an administrative
machine within the organization.

· The administrative machine encrypts the sample and sends it to a central virus analysis
machine.

· This machine creates an environment in which the infected program can be safely run for

analysis. Techniques used for this purpose include emulation, or the creation of a protected
environment within which the suspect program can be executed and monitored. The virus
analysis machine then produces a prescription for identifying and removing the virus.

· The resulting prescription is sent back to the administrative machine.

· The administrative machine forwards the prescription to the infected client.

· The prescription is also forwarded to other clients in the organization.

· Subscribers around the world receive regular antivirus updates that protect them from the new
virus.

The success of the digital immune system depends on the ability of the virus analysis machine to
detect new and innovative virus strains. By constantly analyzing and monitoring the viruses
found in the wild, it should be possible to continually update the digital immune software to keep
up with the threat.

Behavior-Blocking Software

Unlike heuristics or fingerprint-based scanners, behavior-blocking software integrates with the
operating system of a host computer and monitors program behavior in real-time for malicious
actions. Monitored behaviors can include the following:

· Attempts to open, view, delete, and/or modify files;

· Attempts to format disk drives and other unrecoverable disk operations;

· Modifications to the logic of executable files or macros;

· Modification of critical system settings, such as start-up settings;

· Scripting of e-mail and instant messaging clients to send executable content; and

· Initiation of network communications.

If the behavior blocker detects that a program is initiating would-be malicious behaviors as it
runs, it can block these behaviors in real-time and/or terminate the offending software. This gives
it a fundamental advantage over such established antivirus detection techniques as fingerprinting
or heuristics.

Distributed denial of service (DDoS) attack

A distributed denial-of-service (DDoS) attack is an attack in which multiple compromised
computer systems attack a target, such as a server, website or other network resource, and cause
a denial of service for users of the targeted resource. The flood of incoming
messages, connection requests or malformed packets to the target system forces it to slow down
or even crash and shut down, thereby denying service to legitimate users or systems.

DDoS attacks have been carried out by diverse threat actors, ranging from individual

criminal hackers to organized crime rings and government agencies. In certain situations, often

ones related to poor coding, missing patches or generally unstable systems, even legitimate

requests to target systems can result in DDoS-like results.

How DDoS attacks work

In a typical DDoS attack, the assailant begins by exploiting a vulnerability in one computer

system and making it the DDoS master. The attack master system identifies other vulnerable

systems and gains control over them by either infecting the systems with malware or through

bypassing the authentication controls (i.e., guessing the default password on a widely used

system or device).

A computer or networked device under the control of an intruder is known as a zombie, or bot.

The attacker creates what is called a command-and-control server to command the network of

bots, also called a botnet. The person in control of a botnet is sometimes referred to as the

botmaster (that term has also historically been used to refer to the first system "recruited" into a

botnet because it is used to control the spread and activity of other systems in the botnet).

Botnets can be comprised of almost any number of bots; botnets with tens or hundreds of

thousands of nodes have become increasingly common, and there may not be an upper limit to

their size. Once the botnet is assembled, the attacker can use the traffic generated by the

compromised devices to flood the target domain and knock it offline.

https://searchsecurity.techtarget.com/definition/hacker
https://searchsecurity.techtarget.com/definition/botnet
https://whatis.techtarget.com/definition/command-and-control-server-CC-server
https://searchmicroservices.techtarget.com/definition/bot-robot
https://searchmidmarketsecurity.techtarget.com/definition/zombie
https://searchsecurity.techtarget.com/definition/malware
https://searchnetworking.techtarget.com/definition/master
https://whatis.techtarget.com/definition/vulnerability
https://searchenterprisedesktop.techtarget.com/definition/patch
https://searchsecurity.techtarget.com/definition/denial-of-service
https://searchnetworking.techtarget.com/definition/packet
https://searchnetworking.techtarget.com/definition/connection

Types of DDoS attacks

There are three types of DDoS attacks. Network-centric or volumetric attacks overload a targeted

resource by consuming available bandwidth with packet floods. Protocol attacks target network

layer or transport layer protocols using flaws in the protocols to overwhelm targeted resources.

And application layer attacks overload application services or databases with a high volume of

application calls. The inundation of packets at the target causes a denial of service.

While it is clear that the target of a DDoS attack is a victim, there can be many other victims in a

typical DDoS attack, including the owners of the systems used to execute the attack. Although

the owners of infected computers are typically unaware their systems have been compromised,

they are nevertheless likely to suffer a degradation of service during a DDoS attack.

Internet of things and DDoS attacks

While the things comprising the internet of things (IoT) may be useful to legitimate users, in

some cases, they are even more helpful to DDoS attackers. The devices connected to IoT include

any appliance into which some computing and networking capacity has been built, and, all too

often, these devices are not designed with security in mind.

Devices connected to the IoT expose large attack surfaces and display minimal attention to

security best practices. For example, devices are often shipped with hard-coded authentication

credentials for system administration, making it simple for attackers to log in to the devices. In

some cases, the authentication credentials cannot be changed. Devices also often ship without the

capability to upgrade or patch device software, further exposing them to attacks that leverage

well-known vulnerabilities.

Internet of things botnets are increasingly being used to wage massive DDoS attacks. In 2016,

the Mirai botnet was used to attack the domain name service provider Dyn, based in Manchester,

N.H.; attack volumes were measured at over 600 Gbps. Another late 2016 attack unleashed on

OVH, the French hosting firm, peaked at more than 1 Tbps.

https://internetofthingsagenda.techtarget.com/definition/IoT-botnet-Internet-of-Things-botnet
https://searchsoftwarequality.techtarget.com/definition/best-practice
https://whatis.techtarget.com/definition/attack-surface
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://searchsqlserver.techtarget.com/definition/database
https://searchnetworking.techtarget.com/definition/Application-layer
https://searchnetworking.techtarget.com/definition/Transport-layer
https://searchnetworking.techtarget.com/definition/Network-layer
https://searchnetworking.techtarget.com/definition/Network-layer
https://searchnetworking.techtarget.com/definition/protocol
https://searchnetworking.techtarget.com/definition/packet

DDoS defense and prevention

DDoS attacks can create significant business risks with lasting effects. Therefore, it is important

for IT and security administrators and managers, as well as their business executives, to

understand the threats, vulnerabilities and risks associated with DDoS attacks.

Being on the receiving end of a DDoS attack is practically impossible to prevent. However, the

business impact of these attacks can be minimized through some core

information security practices, including performing ongoing security assessments to look for --

and resolve -- denial of service-related vulnerabilities and using network security controls,

including services from cloud-based vendors specializing in responding to DDoS attacks.

In addition, solid patch management practices, email phishing testing and user awareness, and

proactive network monitoring and alerting can help minimize an organization's contribution to

DDoS attacks across the internet.

Firewall design principles

Internet connectivity is no longer an option for most organizations. However, while
internet access provides benefits to the organization, it enables the outside world to reach
and interact with local network assets. This creates the threat to the organization. While it
is possible to equip each workstation and server on the premises network with strong
security features, such as intrusion protection, this is not a practical approach. The
alternative, increasingly accepted, is the firewall.

The firewall is inserted between the premise network and internet to establish a
controlled link and to erect an outer security wall or perimeter. The aim of this perimeter
is to protect the premises network from internet based attacks and to provide a single
choke point where security and audit can be imposed. The firewall can be a single
computer system or a set of two or more systems that cooperate to perform the firewall
function.

Firewall characteristics:

· All traffic from inside to outside, and vice versa, must pass through the firewall. This is
achieved by physically blocking all access to the local network except via the firewall.

https://searchsecurity.techtarget.com/definition/phishing
https://searchenterprisedesktop.techtarget.com/definition/patch-management
https://searchsecurity.techtarget.com/definition/security

· Various configurations are possible.

· Only authorized traffic, as defined by the local security policy, will be allowed to pass.

· Various types of firewalls are used, which implement various types of security policies.

· The firewall itself is immune to penetration. This implies that use of a trusted system with a

secure operating system. This implies that use of a trusted system with a secure operating
system.

Four techniques that firewall use to control access and enforce the site s security policy is as‟s access controls to exploit a legitimate user‟s account.
follows:

1. Service control – determines the type of internet services that can be accessed, inbound or
outbound. The firewall may filter traffic on this basis of IP address and TCP port number; may
provide proxy software that receives and interprets each service request before passing it on; or
may host the server software itself, such as web or mail service.

2. Direction control – determines the direction in which particular service request may be initiated

and allowed to flow through the firewall.

3. User control – controls access to a service according to which user is attempting to access it.

4. Behavior control – controls how particular services are used.

Capabilities of firewall

A firewall defines a single choke point that keeps unauthorized users out of the protected
network, prohibits potentially vulnerable services from entering or leaving the network, and
provides protection from various kinds of IP spoofing and routing attacks.

A firewall provides a location for monitoring security related events. Audits and alarms can be
implemented on the firewall system.

A firewall is a convenient platform for several internet functions that are not security related.

A firewall can serve as the platform for IPsec.

Limitations of firewall

· The firewall cannot protect against attacks that bypass the firewall. Internal systems may have
dial-out capability to connect to an ISP. An internal LAN may support a modem pool that
provides dial-in capability for traveling employees and telecommuters.

· The firewall does not protect against internal threats. The firewall does not protect against
internal threats, such as a disgruntled employee or an employee who unwittingly cooperates with
an external attacker.

· The firewall cannot protect against the transfer of virus-infected programs or files. Because of
the variety of operating systems and applications supported inside the perimeter, it would be
impractical and perhaps impossible for the firewall to scan all incoming files, e-mail, and
messages for viruses.

Types of firewalls

There are 3 common types of firewalls.

· Packet filters
·
· Application-level gateways
·
· Circuit-level gateways

Packet filtering router

A packet filtering router applies a set of rules to each incoming IP packet and then
forwards or discards the packet. The router is typically configured to filter packets going
in both directions. Filtering rules are based on the information contained in a network
packet:

 Application level gateway

An Application level gateway, also called a proxy server, acts as a relay of application level
traffic. The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the
gateway asks the user for the name of the remote host to be accessed. When the user responds
and provides a valid user ID and authentication information, the gateway contacts the application
on the remote host and relays TCP segments containing the application data between the two
endpoints.

Application level gateways tend to be more secure than packet filters. It is easy to log and audit
all incoming traffic at the application level. A prime disadvantage is the additional processing
overhead on each connection.

Circuit level gateway

Circuit level gateway can be a stand-alone system or it can be a specified function performed by
an application level gateway for certain applications. A Circuit level gateway does not permit an
end-to-end TCP connection; rather, the gateway sets up two TCP connections, one between itself
and a TCP user on an inner host and one between itself and a TCP user on an outer host. Once
the two connections are established, the gateway typically relays TCP segments from one
connection to the other without examining the contents. The security function consists of
determining which connections will be allowed. A typical use of Circuit level gateways is a
situation in which the system administrator trusts the internal users. The gateway can be
configured to support application level or proxy service on inbound connections and circuit level
functions for outbound connections.

Trusted System :

Common Criteria for Information Technology Security Evaluation

 1 The CC permits comparability between the results of independent security evaluations. The CC
does so by providing a common set of requirements for the security functionality of IT products and
for assurance measures applied to these IT products during a security evaluation. These IT products
may be implemented in hardware, firmware or software.

2 The evaluation process establishes a level of confidence that the security functionality of these IT
products and the assurance measures applied to these IT products meet these requirements. The
evaluation results may help consumers to determine whether these IT products fulfil their security
needs.

3 The CC is useful as a guide for the development, evaluation and/or procurement of IT products
with security functionality.

4 The CC is intentionally flexible, enabling a range of evaluation methods to be applied to a range
of security properties of a range of IT products. Therefore users of the standard are cautioned to
exercise care that this flexibility is not misused. For example, using the CC in conjunction with
unsuitable evaluation methods, irrelevant security properties, or inappropriate IT products, may
result in meaningless evaluation results.

5 Consequently, the fact that an IT product has been evaluated has meaning only in the context of
the security properties that were evaluated and the evaluation methods that were used. Evaluation
authorities are advised to carefully check the products, properties and methods to determine that an
evaluation will provide meaningful results. Additionally, purchasers of evaluated products are
advised to carefully consider this context to determine whether the evaluated product is useful and
applicable to their specific situation and needs.

6 The CC addresses protection of assets from unauthorised disclosure, modification, or loss of use.
The categories of protection relating to these three types of failure of security are commonly called
confidentiality, integrity, and availability, respectively. The CC may also be applicable to aspects of
IT security outside of these three. The CC is applicable to risks arising from human activities
(malicious or otherwise) and to risks arising from non-human activities. Apart from IT security, the
CC may be applied in other areas of IT, but makes no claim of applicability in these areas.

7 Certain topics, because they involve specialised techniques or because they are somewhat
peripheral to IT security, are considered to be outside the scope of the CC. Some of these are
identified below.

a) The CC does not contain security evaluation criteria pertaining to administrative security
measures not related directly to the IT security functionality. However, it is recognised that

significant security can often be achieved through or supported by administrative measures
such as organisational, personnel, physical, and procedural controls. Introduction Page 12 of
106 Version 3.1 April 2017

b) The evaluation of some technical physical aspects of IT security such as electromagnetic
emanation control is not specifically covered, although many of the concepts addressed will
be applicable to that area.

c) The CC does not address the evaluation methodology under which the criteria should be
applied. This methodology is given in the CEM.

d) The CC does not address the administrative and legal framework under which the criteria
may be applied by evaluation authorities. However, it is expected that the CC will be used for
evaluation purposes in the context of such a framework.

e) The procedures for use of evaluation results in accreditation are outside the scope of the
CC. Accreditation is the administrative process whereby authority is granted for the operation
of an IT product (or collection thereof) in its full operational environment including all of its
non-IT parts. The results of the evaluation process are an input to the accreditation process.
However, as other techniques are more appropriate for the assessments of non-IT related
properties and their relationship to the IT security parts, accreditors should make separate
provisions for those aspects.

f) The subject of criteria for the assessment of the inherent qualities of cryptographic
algorithms is not covered in the CC. Should independent assessment of mathematical
properties of cryptography be required, the evaluation scheme under which the CC is applied
must make provision for such assessments.

8 ISO terminology, such as "can", "informative", "may", "normative", "shall" and "should" used
throughout the document are defined in the ISO/IEC Directives, Part 2. Note that the term "should"
has an additional meaning applicable when using this standard. See the note below. The following
definition is given for the use of “should” in the CC. within normative text, “should” indicates “that
among several.

9 should possibilities one is recommended as particularly suitable, without mentioning or excluding
others, or that a certain course of action is preferred but not necessarily required.” (ISO/IEC
Directives, Part 2). The CC interprets “not necessarily required” to mean that the choice of another
possibility requires a justification of why the preferred option was not chosen.

